Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2004</td>
<td>Online only</td>
<td>New for Version 1.0 (Release 14SP1+)</td>
</tr>
<tr>
<td>March 2005</td>
<td>Online only</td>
<td>Revised for Version 1.0.1 (Release 14SP2)</td>
</tr>
<tr>
<td>September 2005</td>
<td>Online only</td>
<td>Revised for Version 1.0.2 (Release 14SP3)</td>
</tr>
<tr>
<td>November 2005</td>
<td>Online only</td>
<td>Revised for Version 2.0 (Release 14SP3+)</td>
</tr>
<tr>
<td>March 2006</td>
<td>Online only</td>
<td>Revised for Version 2.0.1 (Release 2006a)</td>
</tr>
<tr>
<td>September 2006</td>
<td>Online only</td>
<td>Revised for Version 3.0 (Release 2006b)</td>
</tr>
<tr>
<td>March 2007</td>
<td>Online only</td>
<td>Revised for Version 3.1 (Release 2007a)</td>
</tr>
<tr>
<td>September 2007</td>
<td>Online only</td>
<td>Revised for Version 3.2 (Release 2007b)</td>
</tr>
<tr>
<td>March 2008</td>
<td>Online only</td>
<td>Revised for Version 3.3 (Release 2008a)</td>
</tr>
<tr>
<td>October 2008</td>
<td>Online only</td>
<td>Revised for Version 4.0 (Release 2008b)</td>
</tr>
<tr>
<td>March 2009</td>
<td>Online only</td>
<td>Revised for Version 4.1 (Release 2009a)</td>
</tr>
<tr>
<td>September 2009</td>
<td>Online only</td>
<td>Revised for Version 4.2 (Release 2009b)</td>
</tr>
<tr>
<td>March 2010</td>
<td>Online only</td>
<td>Revised for Version 4.3 (Release 2010a)</td>
</tr>
<tr>
<td>September 2010</td>
<td>Online only</td>
<td>Revised for Version 5.0 (Release 2010b)</td>
</tr>
<tr>
<td>April 2011</td>
<td>Online only</td>
<td>Revised for Version 5.1 (Release 2011a)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Online only</td>
<td>Revised for Version 5.2 (Release 2011b)</td>
</tr>
<tr>
<td>March 2012</td>
<td>Online only</td>
<td>Revised for Version 6.0 (Release 2012a)</td>
</tr>
<tr>
<td>September 2012</td>
<td>Online only</td>
<td>Revised for Version 6.1 (Release 2012b)</td>
</tr>
<tr>
<td>March 2013</td>
<td>Online only</td>
<td>Revised for Version 6.2 (Release 2013a)</td>
</tr>
<tr>
<td>September 2013</td>
<td>Online only</td>
<td>Revised for Version 6.3 (Release 2013b)</td>
</tr>
</tbody>
</table>
Getting Started

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Computing Toolbox Product Description</td>
<td>1-2</td>
</tr>
<tr>
<td>Key Features</td>
<td>1-2</td>
</tr>
<tr>
<td>Parallel Computing with MathWorks Products</td>
<td>1-3</td>
</tr>
<tr>
<td>Key Problems Addressed by Parallel Computing</td>
<td>1-4</td>
</tr>
<tr>
<td>Run Parallel for-Loops (parfor)</td>
<td>1-4</td>
</tr>
<tr>
<td>Execute Batch Jobs in Parallel</td>
<td>1-5</td>
</tr>
<tr>
<td>Partition Large Data Sets</td>
<td>1-5</td>
</tr>
<tr>
<td>Introduction to Parallel Solutions</td>
<td>1-6</td>
</tr>
<tr>
<td>Interactively Run a Loop in Parallel</td>
<td>1-6</td>
</tr>
<tr>
<td>Run a Batch Job</td>
<td>1-8</td>
</tr>
<tr>
<td>Run a Batch Parallel Loop</td>
<td>1-9</td>
</tr>
<tr>
<td>Run Script as Batch Job from the Current Folder</td>
<td></td>
</tr>
<tr>
<td>Browser</td>
<td>1-11</td>
</tr>
<tr>
<td>Distribute Arrays and Run SPMD</td>
<td>1-12</td>
</tr>
<tr>
<td>Determine Product Installation and Versions</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Parallel for-Loops (parfor)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting Started with parfor</td>
<td>2-2</td>
</tr>
<tr>
<td>parfor-Loops in MATLAB</td>
<td>2-2</td>
</tr>
<tr>
<td>Deciding When to Use parfor</td>
<td>2-3</td>
</tr>
<tr>
<td>Create a parfor-Loop</td>
<td>2-4</td>
</tr>
<tr>
<td>Differences Between for-Loops and parfor-Loops</td>
<td>2-5</td>
</tr>
<tr>
<td>Reduction Assignments: Values Updated by Each Iteration</td>
<td>2-6</td>
</tr>
</tbody>
</table>
Displaying Output .. 2-7

Programming Considerations 2-8
 MATLAB Path .. 2-8
 Error Handling .. 2-8
 Limitations .. 2-9
 Using Objects in parfor-Loops 2-16
 Performance Considerations 2-16
 Compatibility with Earlier Versions of MATLAB
 Software .. 2-17

Advanced Topics .. 2-18
 About Programming Notes 2-18
 Classification of Variables 2-18
 Improving Performance 2-33

Single Program Multiple Data (spmd)

Execute Simultaneously on Multiple Data Sets 3-2
 Introduction 3-2
 When to Use spmd 3-2
 Define an spmd Statement 3-3
 Display Output 3-5

Access Worker Variables with Composites 3-6
 Introduction to Composites 3-6
 Create Composites in spmd Statements 3-6
 Variable Persistence and Sequences of spmd 3-8
 Create Composites Outside spmd Statements 3-9

Distribute Arrays 3-11
 Distributed Versus Codistributed Arrays 3-11
 Create Distributed Arrays 3-11
 Create Codistributed Arrays 3-12

Programming Tips 3-14
 MATLAB Path 3-14
Interactive Parallel Computation with pmode

pmode Versus spmd .. 4-2
Run Parallel Jobs Interactively Using pmode 4-3
Parallel Command Window 4-11
Running pmode Interactive Jobs on a Cluster 4-16
Plotting Distributed Data Using pmode 4-17

pmode Limitations and Unexpected Results 4-19
Using Graphics in pmode 4-19

pmode Troubleshooting 4-20
 Connectivity Testing 4-20
 Hostname Resolution 4-20
 Socket Connections 4-20

Math with Codistributed Arrays

Nondistributed Versus Distributed Arrays 5-2
 Introduction ... 5-2
 Nondistributed Arrays 5-2
 Codistributed Arrays 5-4

Working with Codistributed Arrays 5-6
Job Monitor GUI 6-26
Manage Jobs Using the Job Monitor 6-27
Identify Task Errors Using the Job Monitor 6-27

Programming Tips 6-29
 Program Development Guidelines 6-29
 Current Working Directory of a MATLAB Worker .. 6-30
 Writing to Files from Workers 6-31
 Saving or Sending Objects 6-31
 Using clear functions 6-32
 Running Tasks That Call Simulink Software 6-32
 Using the pause Function 6-32
 Transmitting Large Amounts of Data 6-32
 Interrupting a Job 6-33
 Speeding Up a Job 6-33

Control Random Number Streams 6-34
 Different Workers 6-34
 Client and Workers 6-35
 Client and GPU 6-36
 Worker CPU and Worker GPU 6-38

Profiling Parallel Code 6-40
 Introduction 6-40
 Collecting Parallel Profile Data 6-40
 Viewing Parallel Profile Data 6-41

Benchmarking Performance 6-51
 HPC Challenge Benchmarks 6-51

Troubleshooting and Debugging 6-52
 Object Data Size Limitations 6-52
 File Access and Permissions 6-52
 No Results or Failed Job 6-54
 Connection Problems Between the Client and MJS .. 6-55
 SFTP Error: Received Message Too Long 6-56
Schedulers and Conditions
- Code the Task Function ... 8-4
- Code in the Client ... 8-5

Program Communicating Jobs for a Generic Scheduler
- Introduction ... 8-8
- Code in the Client ... 8-8

Further Notes on Communicating Jobs
- Number of Tasks in a Communicating Job 8-11
- Avoid Deadlock and Other Dependency Errors 8-11

GPU Computing

GPU Capabilities and Performance
- Capabilities .. 9-2
- Performance Benchmarking .. 9-2

Establish Arrays on a GPU
- Transfer Arrays Between Workspace and GPU 9-3
- Create GPU Arrays Directly 9-4
- Examine gpuArray Characteristics 9-7

Run Built-In Functions on a GPU
- MATLAB ... 9-9
- Example: Call Functions with gpuArrays 9-10
- Considerations for Complex Numbers 9-11

Run Element-wise MATLAB Code on a GPU
- MATLAB Code vs. gpuArray Objects 9-13
- Run Your MATLAB Functions on a GPU 9-13
- Example: Run Your MATLAB Code 9-14
- Supported MATLAB Code ... 9-15

Identify and Select a GPU Device
- Example: Select a GPU .. 9-19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run CUDA or PTX Code on GPU</td>
<td>9-21</td>
</tr>
<tr>
<td>Overview</td>
<td>9-21</td>
</tr>
<tr>
<td>Create a CUDAKernel Object</td>
<td>9-22</td>
</tr>
<tr>
<td>Run a CUDAKernel</td>
<td>9-28</td>
</tr>
<tr>
<td>Complete Kernel Workflow</td>
<td>9-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run MEX-Functions Containing CUDA Code</td>
<td>9-33</td>
</tr>
<tr>
<td>Write a MEX-File Containing CUDA Code</td>
<td>9-33</td>
</tr>
<tr>
<td>Set Up for MEX-File Compilation</td>
<td>9-34</td>
</tr>
<tr>
<td>Compile a GPU MEX-File</td>
<td>9-34</td>
</tr>
<tr>
<td>Run the Resulting MEX-Functions</td>
<td>9-35</td>
</tr>
<tr>
<td>Comparison to a CUDA Kernel</td>
<td>9-35</td>
</tr>
<tr>
<td>Access Complex Data</td>
<td>9-35</td>
</tr>
<tr>
<td>Call Host-Side Libraries</td>
<td>9-36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure and Improve GPU Performance</td>
<td>9-38</td>
</tr>
<tr>
<td>Basic Workflow for Improving Performance</td>
<td>9-38</td>
</tr>
<tr>
<td>Advanced Tools for Improving Performance</td>
<td>9-39</td>
</tr>
<tr>
<td>Best Practices for Improving Performance</td>
<td>9-40</td>
</tr>
<tr>
<td>Measure Performance on the GPU</td>
<td>9-42</td>
</tr>
<tr>
<td>Vectorize for Improved GPU Performance</td>
<td>9-43</td>
</tr>
</tbody>
</table>
Getting Started

- “Parallel Computing Toolbox Product Description” on page 1-2
- “Parallel Computing with MathWorks Products” on page 1-3
- “Key Problems Addressed by Parallel Computing” on page 1-4
- “Introduction to Parallel Solutions” on page 1-6
- “Determine Product Installation and Versions” on page 1-15
Parallel Computing Toolbox Product Description

Perform parallel computations on multicore computers, GPUs, and computer clusters

Parallel Computing Toolbox™ lets you solve computationally and data-intensive problems using multicore processors, GPUs, and computer clusters. High-level constructs—parallel for-loops, special array types, and parallelized numerical algorithms—let you parallelize MATLAB® applications without CUDA or MPI programming. You can use the toolbox with Simulink® to run multiple simulations of a model in parallel.

The toolbox provides twelve workers (MATLAB computational engines) to execute applications locally on a multicore desktop. Without changing the code, you can run the same application on a computer cluster or a grid computing service (using MATLAB Distributed Computing Server™). You can run parallel applications interactively or in batch.

Key Features

- Parallel for-loops (parfor) for running task-parallel algorithms on multiple processors
- Support for CUDA-enabled NVIDIA GPUs
- Ability to run twelve workers locally on a multicore desktop
- Computer cluster and grid support (with MATLAB Distributed Computing Server)
- Interactive and batch execution of parallel applications
- Distributed arrays and spmd (single-program-multiple-data) for large dataset handling and data-parallel algorithms
Parallel Computing with MathWorks Products

In addition to Parallel Computing Toolbox, MATLAB Distributed Computing Server software allows you to run as many MATLAB workers on a remote cluster of computers as your licensing allows. You can also use MATLAB Distributed Computing Server to run workers on your client machine if you want to run more than twelve local workers.

Most MathWorks products let you code in such a way as to run applications in parallel. For example, Simulink models can run simultaneously in parallel, as described in “Run Parallel Simulations”. MATLAB Compiler™ software lets you build and deploy parallel applications, as shown in “Deploy Applications Created Using Parallel Computing Toolbox”.

Several MathWorks products now offer built-in support for the parallel computing products, without requiring extra coding. For the current list of these products and their parallel functionality, see:

Key Problems Addressed by Parallel Computing

In this section...

“Run Parallel for-Loops (parfor)” on page 1-4
“Execute Batch Jobs in Parallel” on page 1-5
“Partition Large Data Sets” on page 1-5

Run Parallel for-Loops (parfor)

Many applications involve multiple segments of code, some of which are repetitive. Often you can use for-loops to solve these cases. The ability to execute code in parallel, on one computer or on a cluster of computers, can significantly improve performance in many cases:

- Parameter sweep applications
 - Many iterations — A sweep might take a long time because it comprises many iterations. Each iteration by itself might not take long to execute, but to complete thousands or millions of iterations in serial could take a long time.
 - Long iterations — A sweep might not have a lot of iterations, but each iteration could take a long time to run.

 Typically, the only difference between iterations is defined by different input data. In these cases, the ability to run separate sweep iterations simultaneously can improve performance. Evaluating such iterations in parallel is an ideal way to sweep through large or multiple data sets. The only restriction on parallel loops is that no iterations be allowed to depend on any other iterations.

- Test suites with independent segments — For applications that run a series of unrelated tasks, you can run these tasks simultaneously on separate resources. You might not have used a for-loop for a case such as this comprising distinctly different tasks, but a parfor-loop could offer an appropriate solution.

Parallel Computing Toolbox software improves the performance of such loop execution by allowing several MATLAB workers to execute individual loop iterations simultaneously. For example, a loop of 100 iterations could run on
a cluster of 20 MATLAB workers, so that simultaneously, the workers each execute only five iterations of the loop. You might not get quite 20 times improvement in speed because of communications overhead and network traffic, but the speedup should be significant. Even running local workers all on the same machine as the client, you might see significant performance improvement on a multicore/multiprocessor machine. So whether your loop takes a long time to run because it has many iterations or because each iteration takes a long time, you can improve your loop speed by distributing iterations to MATLAB workers.

Execute Batch Jobs in Parallel

When working interactively in a MATLAB session, you can offload work to a MATLAB worker session to run as a batch job. The command to perform this job is asynchronous, which means that your client MATLAB session is not blocked, and you can continue your own interactive session while the MATLAB worker is busy evaluating your code. The MATLAB worker can run either on the same machine as the client, or if using MATLAB Distributed Computing Server, on a remote cluster machine.

Partition Large Data Sets

If you have an array that is too large for your computer’s memory, it cannot be easily handled in a single MATLAB session. Parallel Computing Toolbox software allows you to distribute that array among multiple MATLAB workers, so that each worker contains only a part of the array. Yet you can operate on the entire array as a single entity. Each worker operates only on its part of the array, and workers automatically transfer data between themselves when necessary, as, for example, in matrix multiplication. A large number of matrix operations and functions have been enhanced to work directly with these arrays without further modification; see “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-26 and “Using MATLAB Constructor Functions” on page 5-11.
Introduction to Parallel Solutions

In this section...

“Interactively Run a Loop in Parallel” on page 1-6
“Run a Batch Job” on page 1-8
“Run a Batch Parallel Loop” on page 1-9
“Run Script as Batch Job from the Current Folder Browser” on page 1-11
“Distribute Arrays and Run SPMD” on page 1-12

Interactively Run a Loop in Parallel

This section shows how to modify a simple for-loop so that it runs in parallel. This loop does not have a lot of iterations, and it does not take long to execute, but you can apply the principles to larger loops. For these simple examples, you might not notice an increase in execution speed.

1 Suppose your code includes a loop to create a sine wave and plot the waveform:

```matlab
for i=1:1024
    A(i) = sin(i*2*pi/1024);
end
plot(A)
```

2 You can modify your code to run your loop in parallel by using a parfor statement:

```matlab
parfor i=1:1024
    A(i) = sin(i*2*pi/1024);
end
plot(A)
```

The only difference in this loop is the keyword parfor instead of for. When the loop begins, it opens a parallel pool of MATLAB sessions called workers for executing the iterations in parallel. After the loop runs, the results look the same as those generated from the previous for-loop.
Because the iterations run in parallel in other MATLAB sessions, each iteration must be completely independent of all other iterations. The worker calculating the value for \(A(100)\) might not be the same worker calculating \(A(500)\). There is no guarantee of sequence, so \(A(900)\) might be calculated before \(A(400)\). (The MATLAB Editor can help identify some problems with `parfor` code that might not contain independent iterations.) The only place where the values of all the elements of the array \(A\) are available is in your MATLAB client session, after the data returns from the MATLAB workers and the loop completes.

For more information on `parfor`-loops, see “Parallel for-Loops (parfor)”.

You can modify your cluster profiles to control how many workers run your loops, and whether the workers are local or on a cluster. For more information on profiles, see “Clusters and Cluster Profiles” on page 6-14.

Modify your parallel preferences to control whether a parallel pool is created automatically, and how long it remains available before timing out. For more information on preferences, see “Parallel Preferences” on page 6-12.

You can run Simulink models in parallel loop iterations with the `sim` command inside your loop. For more information and examples of using Simulink with `parfor`, see “Run Parallel Simulations” in the Simulink documentation.
Run a Batch Job

To offload work from your MATLAB session to run in the background in another session, you can use the `batch` command. This example uses the `for`-loop from the previous example, inside a script.

1. To create the script, type:
   ```
   edit mywave
   ```

2. In the MATLAB Editor, enter the text of the `for`-loop:
   ```
   for i=1:1024
       A(i) = sin(i*2*pi/1024);
   end
   ```

3. Save the file and close the Editor.

4. Use the `batch` command in the MATLAB Command Window to run your script on a separate MATLAB worker:
   ```
   job = batch('mywave')
   ```

5. The `batch` command does not block MATLAB, so you must wait for the job to finish before you can retrieve and view its results:
   ```
   wait(job)
   ```

6. The `load` command transfers variables from the workspace of the worker to the workspace of the client, where you can view the results:
   ```
   load(job,'A')
   plot(A)
   ```

7. When the job is complete, permanently remove its data:
   ```
   delete(job)
   ```
batch runs your code on a local worker or a cluster worker, but does not require a parallel pool.

You can use batch to run either scripts or functions. For more details, see the batch reference page.

Run a Batch Parallel Loop

You can combine the abilities to offload a job and run a parallel loop. In the previous two examples, you modified a for-loop to make a parfor-loop, and you submitted a script with a for-loop as a batch job. This example combines the two to create a batch parfor-loop.

1. Open your script in the MATLAB Editor:
   ```matlab
edit mywave
```

2. Modify the script so that the for statement is a parfor statement:
   ```matlab
   parfor i=1:1024
       A(i) = sin(i*2*pi/1024);
   end
   ```

3. Save the file and close the Editor.

4. Run the script in MATLAB with the batch command as before, but indicate that the script should use a parallel pool for the loop:
   ```matlab
   job = batch('mywave', 'Pool', 3)
   ```

This command specifies that three workers (in addition to the one running the batch script) are to evaluate the loop iterations. Therefore, this example uses a total of four local workers, including the one worker running the batch script. Altogether, there are five MATLAB sessions involved, as shown in the following diagram.
To view the results:

```matlab
wait(job)
load(job,'A')
plot(A)
```

The results look the same as before, however, there are two important differences in execution:

- The work of defining the `parfor`-loop and accumulating its results are offloaded to another MATLAB session by `batch`.
- The loop iterations are distributed from one MATLAB worker to another set of workers running simultaneously ('Pool' and `parfor`), so the loop might run faster than having only one worker execute it.

When the job is complete, permanently remove its data:

```matlab
delete(job)
```
Run Script as Batch Job from the Current Folder Browser

From the Current Folder browser, you can run a MATLAB script as a batch job by browsing to the file’s folder, right-clicking the file, and selecting Run Script as Batch Job. The batch job runs on the cluster identified by the current default cluster profile. The following figure shows the menu option to run the script file script1.m:

Running a script as a batch from the browser uses only one worker from the cluster. So even if the script contains a parfor loop or spmd block, it does not open an additional pool of workers on the cluster. These code blocks execute on the single worker used for the batch job. If your batch script requires opening an additional pool of workers, you can run it from the command line, as described in “Run a Batch Parallel Loop” on page 1-9.

When you run a batch job from the browser, this also opens the Job Monitor. The Job Monitor is a tool that lets you track your job in the scheduler queue. For more information about the Job Monitor and its capabilities, see “Job Monitor” on page 6-26.
Distribute Arrays and Run SPMD

Distributed Arrays
The workers in a parallel pool communicate with each other, so you can distribute an array among the workers. Each worker contains part of the array, and all the workers are aware of which portion of the array each worker has.

Use the `distributed` function to distribute an array among the workers:

\[M = \text{magic}(4) \] % a 4-by-4 magic square in the client workspace
\[MM = \text{distributed}(M) \]

Now \(MM \) is a distributed array, equivalent to \(M \), and you can manipulate or access its elements in the same way as any other array.

\[M2 = 2*MM; \] % \(M2 \) is also distributed, calculation performed on workers
\[x = M2(1,1) \] % \(x \) on the client is set to first element of \(M2 \)

Single Program Multiple Data (spmd)
The single program multiple data (spmd) construct lets you define a block of code that runs in parallel on all the workers in a parallel pool. The spmd block can run on some or all the workers in the pool.

\[\text{spmd} \]
\[\quad \text{R} = \text{rand}(4); \]
\[\text{end} \]

This code creates an individual 4-by-4 matrix, \(R \), of random numbers on each worker in the pool.

Composites
Following an spmd statement, in the client context, the values from the block are accessible, even though the data is actually stored on the workers. On the client, these variables are called Composite objects. Each element of a composite is a symbol referencing the value (data) on a worker in the pool. Note that because a variable might not be defined on every worker, a Composite might have undefined elements.
Continuing with the example from above, on the client, the Composite R has one element for each worker:

\[X = R\{3\}; \quad \text{% Set } X \text{ to the value of } R \text{ from worker 3.} \]

The line above retrieves the data from worker 3 to assign the value of X. The following code sends data to worker 3:

\[X = X + 2; \]
\[R\{3\} = X; \quad \text{% Send the value of } X \text{ from the client to worker 3.} \]

If the parallel pool remains open between `spmd` statements and the same workers are used, the data on each worker persists from one `spmd` statement to another.

\[
\begin{align*}
\text{spmd} \\
R = R + \text{labindex} & \quad \% \text{Use values of } R \text{ from previous } \text{spmd}. \\
\text{end}
\end{align*}
\]

A typical use for `spmd` is to run the same code on a number of workers, each of which accesses a different set of data. For example:

\[
\begin{align*}
\text{spmd} \\
\text{INP} = \text{load}([\text{\textquote Singlequote} \text{'somedatafile' num2str(labindex) \textquote Singlequote 'mat']);} \\
\text{RES} = \text{somefun(INP)} \\
\text{end}
\end{align*}
\]

Then the values of `RES` on the workers are accessible from the client as `RES\{1\}` from worker 1, `RES\{2\}` from worker 2, etc.

There are two forms of indexing a Composite, comparable to indexing a cell array:

- `AA\{n\}` returns the values of `AA` from worker `n`.
- `AA(n)` returns a cell array of the content of `AA` from worker `n`.

Although data persists on the workers from one `spmd` block to another as long as the parallel pool remains open, data does not persist from one instance of a parallel pool to another. That is, if the pool is deleted and a new one created, all data from the first pool is lost.
For more information about using distributed arrays, `spmd`, and Composites, see “Distributed Arrays and SPMD”.
Determine Product Installation and Versions

To determine if Parallel Computing Toolbox software is installed on your system, type this command at the MATLAB prompt.

`ver`

When you enter this command, MATLAB displays information about the version of MATLAB you are running, including a list of all toolboxes installed on your system and their version numbers.

If you want to run your applications on a cluster, see your system administrator to verify that the version of Parallel Computing Toolbox you are using is the same as the version of MATLAB Distributed Computing Server installed on your cluster.
Parallel for-Loops (parfor)

- “Getting Started with parfor” on page 2-2
- “Programming Considerations” on page 2-8
- “Advanced Topics” on page 2-18
Getting Started with parfor

In this section...

- “parfor-Loops in MATLAB” on page 2-2
- “Deciding When to Use parfor” on page 2-3
- “Create a parfor-Loop” on page 2-4
- “Differences Between for-Loops and parfor-Loops” on page 2-5
- “Reduction Assignments: Values Updated by Each Iteration” on page 2-6
- “Displaying Output” on page 2-7

parfor-Loops in MATLAB

The basic concept of a parfor-loop in MATLAB software is the same as the standard MATLAB for-loop: MATLAB executes a series of statements (the loop body) over a range of values. Part of the parfor body is executed on the MATLAB client (where the parfor is issued) and part is executed in parallel on MATLAB workers working together as a parallel pool. The necessary data on which parfor operates is sent from the client to workers, where most of the computation happens, and the results are sent back to the client and pieced together.

Because several MATLAB workers can be computing concurrently on the same loop, a parfor-loop can provide significantly better performance than its analogous for-loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB workers evaluate iterations in no particular order, and independently of each other. Because each iteration is independent, there is no guarantee that the iterations are synchronized in any way, nor is there any need for this. If the number of workers is equal to the number of loop iterations, each worker performs one iteration of the loop. If there are more iterations than workers, some workers perform more than one loop iteration; in this case, a worker might receive multiple iterations at once to reduce communication time.
Deciding When to Use parfor

A parfor-loop is useful in situations where you need many loop iterations of a simple calculation, such as a Monte Carlo simulation. parfor divides the loop iterations into groups so that each worker executes some portion of the total number of iterations. parfor-loops are also useful when you have loop iterations that take a long time to execute, because the workers can execute iterations simultaneously.

You cannot use a parfor-loop when an iteration in your loop depends on the results of other iterations. Each iteration must be independent of all others. Since there is a communications cost involved in a parfor-loop, there might be no advantage to using one when you have only a small number of simple calculations. The examples of this section are only to illustrate the behavior of parfor-loops, not necessarily to show the applications best suited to them.
Create a parfor-Loop

The safest assumption about a `parfor`-loop is that each iteration of the loop is evaluated by a different MATLAB worker. If you have a `for`-loop in which all iterations are completely independent of each other, this loop is a good candidate for a `parfor`-loop. Basically, if one iteration depends on the results of another iteration, these iterations are not independent and cannot be evaluated in parallel, so the loop does not lend itself easily to conversion to a `parfor`-loop.

The following examples produce equivalent results, with a `for`-loop on the left, and a `parfor`-loop on the right. Try typing each in your MATLAB Command Window:

```matlab
clear A
for i = 1:8
    A(i) = i;
end
A
```

```matlab
clear A
parfor i = 1:8
    A(i) = i;
end
A
```

Notice that each element of `A` is equal to its index. The `parfor`-loop works because each element depends only upon its iteration of the loop, and upon no other iterations. `for`-loops that merely repeat such independent tasks are ideally suited candidates for `parfor`-loops.

Note If a parallel pool is not running, `parfor` creates a pool using your default cluster profile, if your parallel preferences are set accordingly.
Differences Between for-Loops and parfor-Loops

Because parfor-loops are not quite the same as for-loops, there are special behaviors to be aware of. As seen from the preceding example, when you assign to an array variable (such as A in that example) inside the loop by indexing with the loop variable, the elements of that array are available to you after the loop, much the same as with a for-loop.

However, suppose you use a nonindexed variable inside the loop, or a variable whose indexing does not depend on the loop variable i. Try these examples and notice the values of d and i afterward:

```matlab
clear A
d = 0; i = 0;
for i = 1:4
    d = i*2;
    A(i) = d;
end
A
d
i
```
```
clear A
d = 0; i = 0;
parfor i = 1:4
    d = i*2;
    A(i) = d;
end
A
d
i
```

Although the elements of A come out the same in both of these examples, the value of d does not. In the for-loop above on the left, the iterations execute in sequence, so afterward d has the value it held in the last iteration of the loop. In the parfor-loop on the right, the iterations execute in parallel, not in sequence, so it would be impossible to assign d a definitive value at the end of the loop. This also applies to the loop variable, i. Therefore, parfor-loop behavior is defined so that it does not affect the values d and i outside the loop at all, and their values remain the same before and after the loop.

So, a parfor-loop requires that each iteration be independent of the other iterations, and that all code that follows the parfor-loop not depend on the loop iteration sequence.
Reduction Assignments: Values Updated by Each Iteration

The next two examples show parfor-loops using reduction assignments. A reduction is an accumulation across iterations of a loop. The example on the left uses x to accumulate a sum across 10 iterations of the loop. The example on the right generates a concatenated array, 1:10. In both of these examples, the execution order of the iterations on the workers does not matter: while the workers calculate individual results, the client properly accumulates or assembles the final loop result.

```matlab
x = 0;
parfor i = 1:10
    x = x + i;
end
x
```

```matlab
x2 = [];
n = 10;
parfor i = 1:n
    x2 = [x2, i];
end
x2
```

If the loop iterations operate in random sequence, you might expect the concatenation sequence in the example on the right to be nonconsecutive. However, MATLAB recognizes the concatenation operation and yields deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not a valid parfor-loop because the value of an element of f in one iteration depends on the values of other elements of f calculated in other iterations.

```matlab
f = zeros(1,50);
f(1) = 1;
f(2) = 2;
parfor n = 3:50
    f(n) = f(n-1) + f(n-2);
end
```

When you are finished with your loop examples, clear your workspace and delete your parallel pool of workers:

```matlab
clear
delete(gcp)
```

The following sections provide further information regarding programming considerations and limitations for parfor-loops.
Displaying Output

When running a `parfor`-loop on a parallel pool, all command-line output from the workers displays in the client Command Window, except output from variable assignments. Because the workers are MATLAB sessions without displays, any graphical output (for example, figure windows) from the pool does not display at all.
Programming Considerations

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“MATLAB Path” on page 2-8</td>
</tr>
<tr>
<td>“Error Handling” on page 2-8</td>
</tr>
<tr>
<td>“Limitations” on page 2-9</td>
</tr>
<tr>
<td>“Using Objects in parfor-Loops” on page 2-16</td>
</tr>
<tr>
<td>“Performance Considerations” on page 2-16</td>
</tr>
<tr>
<td>“Compatibility with Earlier Versions of MATLAB Software” on page 2-17</td>
</tr>
</tbody>
</table>

MATLAB Path

All workers executing a `parfor`-loop must have the same MATLAB search path as the client, so that they can execute any functions called in the body of the loop. Therefore, whenever you use `cd`, `addpath`, or `rmpath` on the client, it also executes on all the workers, if possible. For more information, see the `parpool` reference page. When the workers are running on a different platform than the client, use the function `pctRunOnAll` to properly set the MATLAB search path on all workers.

Functions files that contain `parfor`-loops must be available on the search path of the workers in the pool running the `parfor`, or made available to the workers by the `AttachedFiles` or `AdditionalPaths` setting of the parallel pool.

Error Handling

When an error occurs during the execution of a `parfor`-loop, all iterations that are in progress are terminated, new ones are not initiated, and the loop terminates.

Errors and warnings produced on workers are annotated with the worker ID and displayed in the client’s Command Window in the order in which they are received by the client MATLAB.
The behavior of `lastwarn` is unspecified at the end of the `parfor` if used within the loop body.

Limitations

Unambiguous Variable Names
If you use a name that MATLAB cannot unambiguously distinguish as a variable inside a `parfor`-loop, at parse time MATLAB assumes you are referencing a function. Then at run-time, if the function cannot be found, MATLAB generates an error. (See “Variable Names” in the MATLAB documentation.) For example, in the following code `f(5)` could refer either to the fifth element of an array named `f`, or to a function named `f` with an argument of 5. If `f` is not clearly defined as a variable in the code, MATLAB looks for the function `f` on the path when the code runs.

```matlab
parfor i = 1:n
    ...
    a = f(5);
    ...
end
```

Transparency
The body of a `parfor`-loop must be *transparent*, meaning that all references to variables must be “visible” (i.e., they occur in the text of the program).

In the following example, because `X` is not visible as an input variable in the `parfor` body (only the string `'X'` is passed to `eval`), it does not get transferred to the workers. As a result, MATLAB issues an error at run time:

```matlab
X = 5;
parfor ii = 1:4
    eval('X');
end
```

Similarly, you cannot clear variables from a worker’s workspace by executing `clear` inside a `parfor` statement:

```matlab
parfor ii = 1:4
```
<statements...>
clear('X') % cannot clear: transparency violation
<statements...>
end

As a workaround, you can free up most of the memory used by a variable by setting its value to empty, presumably when it is no longer needed in your parfor statement:

parfor ii= 1:4
 <statements...>
 X = [];
 <statements...>
end

Examples of some other functions that violate transparency are evalc, evalin, and assignin with the workspace argument specified as 'caller'; save and load, unless the output of load is assigned to a variable. Running a script from within a parfor-loop can cause a transparency violation if the script attempts to access (read or write) variables of the parent workspace; to avoid this issue, convert the script to a function and call it with the necessary variables as input or output arguments.

MATLAB does successfully execute eval and evalc statements that appear in functions called from the parfor body.

Sliced Variables Referencing Function Handles

Because of the way sliced input variables are segmented and distributed to the workers in the parallel pool, you cannot use a sliced input variable to reference a function handle. If you need to call a function handle with the parfor index variable as an argument, use feval.

For example, suppose you had a for-loop that performs:

B = @sin;
for ii = 1:100
 A(ii) = B(ii);
end
A corresponding `parfor`-loop does not allow `B` to reference a function handle. So you can work around the problem with `feval`:

```matlab
B = @sin;
p = 1:100
A(p) = feval(B, p);
```

Nondistributable Functions

If you use a function that is not strictly computational in nature (e.g., `input`, `plot`, `keyboard`) in a `parfor`-loop or in any function called by a `parfor`-loop, the behavior of that function occurs on the worker. The results might include hanging the worker process or having no visible effect at all.

Nested Functions

The body of a `parfor`-loop cannot make reference to a nested function. However, it can call a nested function by means of a function handle.

Nested Loops

The body of a `parfor`-loop cannot contain another `parfor`-loop. But it can call a function that contains another `parfor`-loop.

However, because a worker cannot open a parallel pool, a worker cannot run the inner nested `parfor`-loop in parallel. This means that only one level of nested `parfor`-loops can run in parallel. If the outer loop runs in parallel on a parallel pool, the inner loop runs serially on each worker. If the outer loop runs serially in the client (e.g., `parfor` specifying zero workers), the function that contains the inner loop can run the inner loop in parallel on workers in a pool.

The body of a `parfor`-loop can contain `for`-loops. You can use the inner loop variable for indexing the sliced array, but only if you use the variable in plain form, not part of an expression. For example:

```matlab
A = zeros(4,5);
p = 1:4
for k = 1:5
    A(p,k) = p + k;
```
Further nesting of for-loops with a parfor is also allowed.

Limitations of Nested for-Loops. For proper variable classification, the range of a for-loop nested in a parfor must be defined by constant numbers or variables. In the following example, the code on the left does not work because the for-loop upper limit is defined by a function call. The code on the right works around this by defining a broadcast or constant variable outside the parfor first:

```matlab
A = zeros(100, 200);
parfor i = 1:size(A, 1)
    for j = 1:size(A, 2)
        A(i, j) = plus(i, j);
    end
end
```

```matlab
A = zeros(100, 200);
n = size(A, 2);
parfor i = 1:size(A, 1)
    for j = 1:n
        A(i, j) = plus(i, j);
    end
end
```

When using the nested for-loop variable for indexing the sliced array, you must use the variable in plain form, not as part of an expression. For example, the following code on the left does not work, but the code on the right does:

```matlab
A = zeros(4, 11);
parfor i = 1:4
    for j = 1:10
        A(i, j + 1) = i + j;
    end
end
```

```matlab
A = zeros(4, 11);
parfor i = 1:4
    for j = 2:11
        A(i, j) = i + j + 1;
    end
end
```

If you use a nested for-loop to index into a sliced array, you cannot use that array elsewhere in the parfor-loop. For example, in the following example, the code on the left does not work because A is sliced and indexed inside the nested for-loop; the code on the right works because v is assigned to A outside the nested loop:
A = zeros(4, 10);
parfor i = 1:4
 for j = 1:10
 A(i, j) = i + j;
 end
 disp(A(i, 1))
end

Inside a parfor, if you use multiple for-loops (not nested inside each other) to index into a single sliced array, they must loop over the same range of values. In the following example, the code on the left does not work because \(j \) and \(k \) loop over different values; the code on the right works to index different portions of the sliced array \(A \):

\[
\begin{align*}
A &= \text{zeros}(4, 10); \\
\text{parfor} &\ i = 1:4 \\
 &\quad \text{for} \ j = 1:5 \\
 &\quad \quad A(i, j) = i + j; \\
 &\quad \text{end} \\
 &\quad \text{for} \ k = 6:10 \\
 &\quad \quad A(i, k) = \pi; \\
 &\quad \text{end} \\
 &\text{end} \\
\end{align*}
\]

\[
\begin{align*}
A &= \text{zeros}(4, 10); \\
\text{parfor} &\ i = 1:4 \\
 &\quad \text{for} \ j = 1:10 \\
 &\quad \quad v(j) = i + j; \\
 &\quad \text{end} \\
 &\quad \text{disp}(v(1)) \\
 &\quad A(i, :) = v; \\
 &\text{end} \\
\end{align*}
\]

Nested spmd Statements
The body of a parfor-loop cannot contain an spmd statement, and an spmd statement cannot contain a parfor-loop.

Break and Return Statements
The body of a parfor-loop cannot contain break or return statements.
Global and Persistent Variables
The body of a parfor-loop cannot contain global or persistent variable declarations.

Handle Classes
Changes made to handle classes on the workers during loop iterations are not automatically propagated to the client.

P-Code Scripts
You can call P-code script files from within a parfor-loop, but P-code script cannot contain a parfor-loop.
Structure Arrays in parfor-Loops

Creating Structures as Temporaries. You cannot create a structure in a parfor-loop by using dot-notation assignment. For example, in the following code both lines inside the loop generate a classification error.

```plaintext
classification error.
```

```plaintext
parfor i = 1:4
    temp.myfield1 = rand();
    temp.myfield2 = i;
end
```

The workaround is to use the `struct` function to create the structure in the loop, or at least to create the first field. The following code shows two such solutions.

```plaintext
parfor i = 1:4
    temp = struct();
    temp.myfield1 = rand();
    temp.myfield2 = i;
end
```

```plaintext
parfor i = 1:4
    temp = struct('myfield1',rand(),'myfield2',i);
end
```

Slicing Structure Fields. You cannot use structure fields as sliced *input or output* arrays in a parfor-loop; that is, you cannot use the loop variable to index the elements of a structure field. For example, in the following code both lines in the loop generate a classification error because of the indexing:

```plaintext
parfor i = 1:4
    outputData.outArray1(i) = 1/i;
    outputData.outArray2(i) = i^2;
end
```

The workaround for sliced output is to employ separate sliced arrays in the loop, and assign the structure fields after the loop is complete, as shown in the following code.

```plaintext
parfor i = 1:4
    outArray1(i) = 1/i;
    outArray2(i) = i^2;
```
The workaround for sliced input is to assign the structure field to a separate array before the loop, and use that new array for the sliced input.

```matlab
inArray1 = inputData.inArray1;
inArray2 = inputData.inArray2;
parfor i = 1:4
    temp1 = inArray1(i);
    temp2 = inArray2(i);
end
```

Using Objects in parfor-Loops

If you are passing objects into or out of a `parfor`-loop, the objects must properly facilitate being saved and loaded. For more information, see “Understanding the Save and Load Process”.

Performance Considerations

Slicing Arrays

If a variable is initialized before a `parfor`-loop, then used inside the `parfor`-loop, it has to be passed to each MATLAB worker evaluating the loop iterations. Only those variables used inside the loop are passed from the client workspace. However, if all occurrences of the variable are indexed by the loop variable, each worker receives only the part of the array it needs. For more information, see “Where to Create Arrays” on page 2-33.

Local vs. Cluster Workers

Running your code on local workers might offer the convenience of testing your application without requiring the use of cluster resources. However, there are certain drawbacks or limitations with using local workers. Because the transfer of data does not occur over the network, transfer behavior on local workers might not be indicative of how it will typically occur over a network. For more details, see “Optimizing on Local vs. Cluster Workers” on page 2-34.
Compatibility with Earlier Versions of MATLAB Software

In versions of MATLAB prior to 7.5 (R2007b), the keyword `parfor` designated a more limited style of `parfor`-loop than what is available in MATLAB 7.5 and later. This old style was intended for use with codistributed arrays (such as inside an `spmd` statement or a parallel job), and has been replaced by a `for`-loop that uses `drange` to define its range; see “Looping Over a Distributed Range (for-drange)” on page 5-22.

The past and current functionality of the `parfor` keyword is outlined in the following table:

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Syntax Prior to MATLAB 7.5</th>
<th>Current Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel loop for codistributed arrays</td>
<td><code>parfor i = range</code> loop body</td>
<td><code>for i = drange(range)</code> loop body</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>end</td>
</tr>
<tr>
<td>Parallel loop for implicit distribution of work</td>
<td>Not Implemented</td>
<td><code>parfor i = range</code> loop body</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>end</td>
</tr>
</tbody>
</table>
Advanced Topics

In this section...

| “About Programming Notes” on page 2-18 |
| “Classification of Variables” on page 2-18 |
| “Improving Performance” on page 2-33 |

About Programming Notes

This section presents guidelines and restrictions in shaded boxes like the one shown below. Those labeled as Required result in an error if your parfor code does not adhere to them. MATLAB software catches some of these errors at the time it reads the code, and others when it executes the code. These are referred to here as static and dynamic errors, respectively, and are labeled as Required (static) or Required (dynamic). Guidelines that do not cause errors are labeled as Recommended. You can use MATLAB Code Analyzer to help make your parfor-loops comply with these guidelines.

Required (static): Description of the guideline or restriction

Classification of Variables

- “Overview” on page 2-18
- “Loop Variable” on page 2-19
- “Sliced Variables” on page 2-20
- “Broadcast Variables” on page 2-24
- “Reduction Variables” on page 2-24
- “Temporary Variables” on page 2-31

Overview

When a name in a parfor-loop is recognized as referring to a variable, it is classified into one of the following categories. A parfor-loop generates an
error if it contains any variables that cannot be uniquely categorized or if any variables violate their category restrictions.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop</td>
<td>Serves as a loop index for arrays</td>
</tr>
<tr>
<td>Sliced</td>
<td>An array whose segments are operated on by different iterations of the loop</td>
</tr>
<tr>
<td>Broadcast</td>
<td>A variable defined before the loop whose value is used inside the loop, but never assigned inside the loop</td>
</tr>
<tr>
<td>Reduction</td>
<td>Accumulates a value across iterations of the loop, regardless of iteration order</td>
</tr>
<tr>
<td>Temporary</td>
<td>Variable created inside the loop, but unlike sliced or reduction variables, not available outside the loop</td>
</tr>
</tbody>
</table>

Each of these variable classifications appears in this code fragment:

```matlab
a = 0;
c = pi;
z = 0;
r = rand(1,10);
parfor i = 1:10
    a = i;   % loop variable
    z = z+i;
    b(i) = r(i);
    if i <= c
        d = 2*a;
    end
end
```

Loop Variable
The following restriction is required, because changing i in the `parfor` body invalidates the assumptions MATLAB makes about communication between the client and workers.
Required (static): Assignments to the loop variable are not allowed.

This example attempts to modify the value of the loop variable \(i \) in the body of the loop, and thus is invalid:

```matlab
parfor i = 1:n
    i = i + 1;
    a(i) = i;
end
```

Sliced Variables

A *sliced variable* is one whose value can be broken up into segments, or *slices*, which are then operated on separately by workers and by the MATLAB client. Each iteration of the loop works on a different slice of the array. Using sliced variables is important because this type of variable can reduce communication between the client and workers. Only those slices needed by a worker are sent to it, and only when it starts working on a particular range of indices.

In the next example, a slice of \(A \) consists of a single element of that array:

```matlab
parfor i = 1:length(A)
    B(i) = f(A(i));
end
```

Characteristics of a Sliced Variable. A variable in a `parfor`-loop is sliced if it has all of the following characteristics. A description of each characteristic follows the list:

- **Type of First-Level Indexing** — The first level of indexing is either parentheses, (), or braces, {}.
- **Fixed Index Listing** — Within the first-level parenthesis or braces, the list of indices is the same for all occurrences of a given variable.
- **Form of Indexing** — Within the list of indices for the variable, exactly one index involves the loop variable.
- **Shape of Array** — In assigning to a sliced variable, the right-hand side of the assignment is not [] or ' ' (these operators indicate deletion of elements).
Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed in either parentheses, (), or braces, {}.

This table lists the forms for the first level of indexing for arrays sliced and not sliced.

<table>
<thead>
<tr>
<th>Reference for Variable Not Sliced</th>
<th>Reference for Sliced Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.x</td>
<td>A(...)</td>
</tr>
<tr>
<td>A(...)</td>
<td>A{...}</td>
</tr>
</tbody>
</table>

After the first level, you can use any type of valid MATLAB indexing in the second and further levels.

The variable A shown here on the left is not sliced; that shown on the right is sliced:

A.q{i,12} A{i,12}.q

Fixed Index Listing. Within the first-level parentheses or braces of a sliced variable’s indexing, the list of indices is the same for all occurrences of a given variable.

The variable A shown here on the left is not sliced because A is indexed by i and i+1 in different places; that shown on the right is sliced:

```matlab
parfor i = 1:k
    B(:) = h(A(i), A(i+1));
end
```

The example above on the right shows some occurrences of a sliced variable with first-level parenthesis indexing and with first-level brace indexing in the same loop. This is acceptable.

Form of Indexing. Within the list of indices for a sliced variable, one of these indices is of the form i, i+k, i-k, k+i, or k-i, where i is the loop variable and
k is a constant or a simple (nonindexed) broadcast variable; and every other index is a constant, a simple broadcast variable, colon, or end.

With i as the loop variable, the A variables shown here on the left are not sliced; those on the right are sliced:

\[
\begin{align*}
A(i+f(k),j,:,3) & \quad A(i+k,j,:,3) \\
A(i,20:30,end) & \quad A(i,:,end) \\
A(i,:,s.field1) & \quad A(i,:,k)
\end{align*}
\]

When you use other variables along with the loop variable to index an array, you cannot set these variables inside the loop. In effect, such variables are constant over the execution of the entire parfor statement. You cannot combine the loop variable with itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The variable A shown here on either line is not sliced:

\[
\begin{align*}
A(i,:) = [];
A(end + 1) = i;
\end{align*}
\]

The reason A is not sliced in either case is because changing the shape of a sliced array would violate assumptions governing communication between the client and workers.

Sliced Input and Output Variables. All sliced variables have the characteristics of being input or output. A sliced variable can sometimes have both characteristics. MATLAB transmits sliced input variables from the client to the workers, and sliced output variables from workers back to the client. If a variable is both input and output, it is transmitted in both directions.
In this `parfor`-loop, \(r \) is a sliced input variable and \(b \) is a sliced output variable:

\[
\begin{align*}
a &= 0; \\
z &= 0; \\
r &= \text{rand}(1,10); \\
\text{parfor } ii &= 1:10 \\
 &\quad a = ii; \\
 &\quad z = z + ii; \\
 &\quad b(ii) = r(ii); \\
\end{align*}
\]

However, if it is clear that in every iteration, every reference to an array element is set before it is used, the variable is not a sliced input variable. In this example, all the elements of \(A \) are set, and then only those fixed values are used:

\[
\begin{align*}
\text{parfor } ii &= 1:n \\
 &\quad \text{if someCondition} \\
 &\quad \quad A(ii) = 32; \\
 &\quad \text{else} \\
 &\quad \quad A(ii) = 17; \\
 &\quad \text{end} \\
 &\quad \text{loop code that uses } A(ii) \\
\end{align*}
\]

Even if a sliced variable is not explicitly referenced as an input, implicit usage might make it so. In the following example, not all elements of \(A \) are necessarily set inside the `parfor`-loop, so the original values of the array are received, held, and then returned from the loop, making \(A \) both a sliced input and output variable.

\[
\begin{align*}
A &= 1:10; \\
\text{parfor } ii &= 1:10 \\
 &\quad \text{if rand < 0.5} \\
 &\quad \quad A(ii) = 0; \\
 &\quad \text{end} \\
\end{align*}
\]
Broadcast Variables

A broadcast variable is any variable other than the loop variable or a sliced variable that is not affected by an assignment inside the loop. At the start of a parfor-loop, the values of any broadcast variables are sent to all workers. Although this type of variable can be useful or even essential, broadcast variables that are large can cause a lot of communication between client and workers. In some cases it might be more efficient to use temporary variables for this purpose, creating and assigning them inside the loop.

Reduction Variables

MATLAB supports an important exception, called reductions, to the rule that loop iterations must be independent. A reduction variable accumulates a value that depends on all the iterations together, but is independent of the iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both side of an assignment statement, such as any of the following, where expr is a MATLAB expression.

<table>
<thead>
<tr>
<th>X = X + expr</th>
<th>X = expr + X</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = X - expr</td>
<td>See Associativity in Reduction Assignments in “Further Considerations with Reduction Variables” on page 2-26</td>
</tr>
<tr>
<td>X = X .* expr</td>
<td>X = expr .* X</td>
</tr>
<tr>
<td>X = X * expr</td>
<td>X = expr * X</td>
</tr>
<tr>
<td>X = X & expr</td>
<td>X = expr & X</td>
</tr>
<tr>
<td>X = X</td>
<td>expr</td>
</tr>
<tr>
<td>X = [X, expr]</td>
<td>X = [expr, X]</td>
</tr>
<tr>
<td>X = [X; expr]</td>
<td>X = [expr; X]</td>
</tr>
<tr>
<td>X = {X, expr}</td>
<td>X = {expr, X}</td>
</tr>
<tr>
<td>X = {X; expr}</td>
<td>X = {expr; X}</td>
</tr>
<tr>
<td>X = min(X, expr)</td>
<td>X = min(expr, X)</td>
</tr>
<tr>
<td>X = max(X, expr)</td>
<td>X = max(expr, X)</td>
</tr>
<tr>
<td>X = union(X, expr)</td>
<td>X = union(expr, X)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>X = intersect(X, expr)</td>
<td>X = intersect(expr, X)</td>
</tr>
</tbody>
</table>

Each of the allowed statements listed in this table is referred to as a *reduction assignment*, and, by definition, a reduction variable can appear only in assignments of this type.

The following example shows a typical usage of a reduction variable \(X \):

```matlab
X = ...; % Do some initialization of X
parfor i = 1:n
    X = X + d(i);
end
```

This loop is equivalent to the following, where each \(d(i) \) is calculated by a different iteration:

\[
X = X + d(1) + \ldots + d(n)
\]

If the loop were a regular `for`-loop, the variable \(X \) in each iteration would get its value either before entering the loop or from the previous iteration of the loop. However, this concept does not apply to `parfor`-loops:

In a `parfor`-loop, the value of \(X \) is never transmitted from client to workers or from worker to worker. Rather, additions of \(d(i) \) are done in each worker, with \(i \) ranging over the subset of \(1:n \) being performed on that worker. The results are then transmitted back to the client, which adds the workers' partial sums into \(X \). Thus, workers do some of the additions, and the client does the rest.

Basic Rules for Reduction Variables. The following requirements further define the reduction assignments associated with a given variable.

Required (static): For any reduction variable, the same reduction function or operation must be used in all reduction assignments for that variable.

The `parfor`-loop on the left is not valid because the reduction assignment uses + in one instance, and [,] in another. The `parfor`-loop on the right is valid:
Parallel for-Loops (parfor)

\[
\begin{align*}
\text{parfor } i = 1:n & \quad \text{parfor } i = 1:n \\
\text{if testLevel(k)} & \quad \text{if testLevel(k)} \\
\text{\hspace{1cm} A = A + i;} & \quad \text{\hspace{1cm} A = A + i;} \\
\text{else} & \quad \text{else} \\
\text{\hspace{1cm} A = [A, 4+i];} & \quad \text{\hspace{1cm} A = A + i + 5*k;} \\
\text{end} & \quad \text{end} \\
\% \text{ loop body continued} & \quad \% \text{ loop body continued}
\end{align*}
\]

Required (static): If the reduction assignment uses * or [,], then in every reduction assignment for X, X must be consistently specified as the first argument or consistently specified as the second.

The `parfor`-loop on the left below is not valid because the order of items in the concatenation is not consistent throughout the loop. The `parfor`-loop on the right is valid:

\[
\begin{align*}
\text{parfor } i = 1:n & \quad \text{parfor } i = 1:n \\
\text{if testLevel(k)} & \quad \text{if testLevel(k)} \\
\text{\hspace{1cm} A = [A, 4+i];} & \quad \text{\hspace{1cm} A = [A, 4+i];} \\
\text{else} & \quad \text{else} \\
\text{\hspace{1cm} A = [r(i), A];} & \quad \text{\hspace{1cm} A = [A, r(i)];} \\
\text{end} & \quad \text{end} \\
\% \text{ loop body continued} & \quad \% \text{ loop body continued}
\end{align*}
\]

Further Considerations with Reduction Variables. This section provides more detail about reduction assignments, associativity, commutativity, and overloading of reduction functions.

Reduction Assignments. In addition to the specific forms of reduction assignment listed in the table in “Reduction Variables” on page 2-24, the only other (and more general) form of a reduction assignment is

\[
X = f(X, \text{expr}) \quad X = f(\text{expr}, X)
\]
Required (static): \(f \) can be a function or a variable. If it is a variable, it must not be affected by the `parfor` body (in other words, it is a broadcast variable).

If \(f \) is a variable, then for all practical purposes its value at run time is a function handle. However, this is not strictly required; as long as the right-hand side can be evaluated, the resulting value is stored in \(X \).

The `parfor`-loop below on the left will not execute correctly because the statement \(f = @\times \) causes \(f \) to be classified as a temporary variable and therefore is cleared at the beginning of each iteration. The `parfor` on the right is correct, because it does not assign to \(f \) inside the loop:

\[
\begin{align*}
f &= @(x,k)x * k; \\
\text{parfor } i &= 1:n \\
a &= f(a,i); \\
\% \text{ loop body continued} \\
f &= @\times; \% \text{ Affects } f \\
\text{end}
\end{align*}
\]

Note that the operators `&&` and `||` are not listed in the table in “Reduction Variables” on page 2-24. Except for `&&` and `||`, all the matrix operations of MATLAB have a corresponding function \(f \), such that \(u \ op \ v \) is equivalent to \(f(u,v) \). For `&&` and `||`, such a function cannot be written because \(u \&\& v \) and \(u \vert \vert v \) might or might not evaluate \(v \), but \(f(u,v) \) *always* evaluates \(v \) before calling \(f \). This is why `&&` and `||` are excluded from the table of allowed reduction assignments for a `parfor`-loop.

Every reduction assignment has an associated function \(f \). The properties of \(f \) that ensure deterministic behavior of a `parfor` statement are discussed in the following sections.

Associativity in Reduction Assignments. Concerning the function \(f \) as used in the definition of a reduction variable, the following practice is recommended, but does not generate an error if not adhered to. Therefore, it is up to you to ensure that your code meets this recommendation.
Recommended: To get deterministic behavior of `parfor`-loops, the reduction function \(f \) must be associative.

To be associative, the function \(f \) must satisfy the following for all \(a, b, \) and \(c \):

\[
f(a, f(b,c)) = f(f(a,b),c)
\]

The classification rules for variables, including reduction variables, are purely syntactic. They cannot determine whether the \(f \) you have supplied is truly associative or not. Associativity is assumed, but if you violate this, different executions of the loop might result in different answers.

Note While the addition of mathematical real numbers is associative, addition of floating-point numbers is only approximately associative, and different executions of this `parfor` statement might produce values of \(X \) with different round-off errors. This is an unavoidable cost of parallelism.

For example, the statement on the left yields 1, while the statement on the right returns 1 + \(\text{eps} \):

\[
(1 + \text{eps}/2) + \text{eps}/2 \quad 1 + (\text{eps}/2 + \text{eps}/2)
\]

With the exception of the minus operator (\(-\)), all the special cases listed in the table in “Reduction Variables” on page 2-24 have a corresponding (perhaps approximately) associative function. MATLAB calculates the assignment \(X = X - \text{expr} \) by using \(X = X + (-\text{expr}) \). (So, technically, the function for calculating this reduction assignment is `plus`, not `minus`.) However, the assignment \(X = \text{expr} - X \) cannot be written using an associative function, which explains its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions, including `+`, `.*`, `min`, and `max`, `intersect`, and `union`, are also commutative. That is, they satisfy the following for all \(a \) and \(b \):

\[
f(a,b) = f(b,a)
\]

Examples of noncommutative functions are `*` (because matrix multiplication is not commutative for matrices in which both dimensions have size greater than one), `[,]`, `[;]`, `{,}`, and `{;}`. Noncommutativity is the reason that consistency
in the order of arguments to these functions is required. As a practical matter, a more efficient algorithm is possible when a function is commutative as well as associative, and \texttt{parfor} is optimized to exploit commutativity.

Recommended: Except in the cases of *, [], [;], { }, and { ; }, the function \(f \) of a reduction assignment should be commutative. If \(f \) is not commutative, different executions of the loop might result in different answers.

Unless \(f \) is a known noncommutative built-in, it is assumed to be commutative. There is currently no way to specify a user-defined, noncommutative function in \texttt{parfor}.

Overloading in Reduction Assignments. Most associative functions \(f \) have an identity element \(e \), so that for any \(a \), the following holds true:

\[
f(e, a) = a = f(a, e)
\]

Examples of identity elements for some functions are listed in this table.

<table>
<thead>
<tr>
<th>Function</th>
<th>Identity Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>* and .*</td>
<td>1</td>
</tr>
<tr>
<td>[,] and [;]</td>
<td>[]</td>
</tr>
</tbody>
</table>

MATLAB uses the identity elements of reduction functions when it knows them. So, in addition to associativity and commutativity, you should also keep identity elements in mind when overloading these functions.

Recommended: An overload of +, *, .*, [,], or [;] should be associative if it is used in a reduction assignment in \texttt{parfor}. The overload must treat the respective identity element given above (all with class \texttt{double}) as an identity element.

Recommended: An overload of +, .*, \texttt{union}, or \texttt{intersect} should be commutative.
There is no way to specify the identity element for a function. In these cases, the behavior of \texttt{parfor} is a little less efficient than it is for functions with a known identity element, but the results are correct.

Similarly, because of the special treatment of $X = X - \text{expr}$, the following is recommended.

\begin{quote}
\textbf{Recommended}: An overload of the minus operator (\texttt{-}) should obey the mathematical law that $X - (y + z)$ is equivalent to $(X - y) - z$.
\end{quote}

\textbf{Example: Using a Custom Reduction Function.} Suppose each iteration of a loop performs some calculation, and you are interested in finding which iteration of a loop produces the maximum value. This is a reduction exercise that makes an accumulation across multiple iterations of a loop. Your reduction function must compare iteration results, until finally the maximum value can be determined after all iterations are compared.

First consider the reduction function itself. To compare an iteration’s result against another’s, the function requires as input the current iteration’s result and the known maximum result from other iterations so far. Each of the two inputs is a vector containing an iteration’s result data and iteration number.

\begin{verbatim}
function mc = comparemax(A, B)
 % Custom reduction function for 2-element vector input
 if A(1) >= B(1) % Compare the two input data values
 mc = A; % Return the vector with the larger result
 else
 mc = B;
 end

Inside the loop, each iteration calls the reduction function (\texttt{comparemax}), passing in a pair of 2-element vectors:

- The accumulated maximum and its iteration index (this is the reduction variable, \texttt{cummax})
- The iteration’s own calculation value and index
\end{verbatim}
If the data value of the current iteration is greater than the maximum in `cummmax`, the function returns a vector of the new value and its iteration number. Otherwise, the function returns the existing maximum and its iteration number.

The code for the loop looks like the following, with each iteration calling the reduction function `comparemax` to compare its own data `[dat i]` to that already accumulated in `cummmax`.

```matlab
% First element of cummax is maximum data value
% Second element of cummax is where (iteration) maximum occurs
cummmax = [0 0]; % Initialize reduction variable
parfor ii = 1:100
    dat = rand(); % Simulate some actual computation
    cummax = comparemax(cummmax, [dat ii]);
end
disp(cummmax);
```

Temporary Variables

A *temporary variable* is any variable that is the target of a direct, nonindexed assignment, but is not a reduction variable. In the following `parfor`-loop, `a` and `d` are temporary variables:

```matlab
a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10
    a = i; % Variable a is temporary
    z = z + i;
    if i <= 5
        d = 2*a; % Variable d is temporary
    end
end
```

In contrast to the behavior of a `for`-loop, MATLAB effectively clears any temporary variables before each iteration of a `parfor`-loop. To help ensure the independence of iterations, the values of temporary variables cannot be passed from one iteration of the loop to another. Therefore, temporary
variables must be set inside the body of a parfor-loop, so that their values are defined separately for each iteration.

MATLAB does not send temporary variables back to the client. A temporary variable in the context of the parfor statement has no effect on a variable with the same name that exists outside the loop, again in contrast to ordinary for-loops.

Uninitialized Temporaries. Because temporary variables are cleared at the beginning of every iteration, MATLAB can detect certain cases in which any iteration through the loop uses the temporary variable before it is set in that iteration. In this case, MATLAB issues a static error rather than a run-time error, because there is little point in allowing execution to proceed if a run-time error is guaranteed to occur. This kind of error often arises because of confusion between for and parfor, especially regarding the rules of classification of variables. For example, suppose you write

```matlab
b = true;
parfor i = 1:n
    if b && some_condition(i)
        do_something(i);
        b = false;
    end
    ...
end
```

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a temporary variable because it occurs directly as the target of an assignment inside the loop. Therefore it is cleared at the start of each iteration, so its use in the condition of the if is guaranteed to be uninitialized. (If you change parfor to for, the value of b assumes sequential execution of the loop, so that do_something(i) is executed for only the lower values of i until b is set false.)

Temporary Variables Intended as Reduction Variables. Another common cause of uninitialized temporaries can arise when you have a variable that you intended to be a reduction variable, but you use it elsewhere in the loop, causing it technically to be classified as a temporary variable. For example:
s = 0;
parfor i = 1:n
 s = s + f(i);
 ...
 if (s > whatever)
 ...
 end
end

If the only occurrences of s were the two in the first statement of the body, it would be classified as a reduction variable. But in this example, s is not a reduction variable because it has a use outside of reduction assignments in the line $s > \text{whatever}$. Because s is the target of an assignment (in the first statement), it is a temporary, so MATLAB issues an error about this fact, but points out the possible connection with reduction.

Note that if you change \texttt{parfor} to \texttt{for}, the use of s outside the reduction assignment relies on the iterations being performed in a particular order. The point here is that in a \texttt{parfor}-loop, it matters that the loop “does not care” about the value of a reduction variable as it goes along. It is only after the loop that the reduction value becomes usable.

\section*{Improving Performance}

\subsection*{Where to Create Arrays}

With a \texttt{parfor}-loop, it might be faster to have each MATLAB worker create its own arrays or portions of them in parallel, rather than to create a large array in the client before the loop and send it out to all the workers separately. Having each worker create its own copy of these arrays inside the loop saves the time of transferring the data from client to workers, because all the workers can be creating it at the same time. This might challenge your usual practice to do as much variable initialization before a \texttt{for}-loop as possible, so that you do not needlessly repeat it inside the loop.

Whether to create arrays before the \texttt{parfor}-loop or inside the \texttt{parfor}-loop depends on the size of the arrays, the time needed to create them, whether the workers need all or part of the arrays, the number of loop iterations that each worker performs, and other factors. While many \texttt{for}-loops can be
directly converted to `parfor`-loops, even in these cases there might be other issues involved in optimizing your code.

Optimizing on Local vs. Cluster Workers

With local workers, because all the MATLAB worker sessions are running on the same machine, you might not see any performance improvement from a `parfor`-loop regarding execution time. This can depend on many factors, including how many processors and cores your machine has. You might experiment to see if it is faster to create the arrays before the loop (as shown on the left below), rather than have each worker create its own arrays inside the loop (as shown on the right).

Try the following examples running a parallel pool locally, and notice the difference in time execution for each loop. First open a local parallel pool:

```matlab
parpool('local')
```

Then enter the following examples. (If you are viewing this documentation in the MATLAB help browser, highlight each segment of code below, right-click, and select **Evaluate Selection** in the context menu to execute the block in MATLAB. That way the time measurement will not include the time required to paste or type.)

```matlab
tic;
 n = 200;
 M = magic(n);
 R = rand(n);
 parfor i = 1:n
   A(i) = sum(M(i,:).*R(n+1-i,:));
 end
toc
tic;
 n = 200;
 parfor i = 1:n
   M = magic(n);
   R = rand(n);
   A(i) = sum(M(i,:).*R(n+1-i,:));
 end
toc
```

Running on a remote cluster, you might find different behavior as workers can simultaneously create their arrays, saving transfer time. Therefore, code that is optimized for local workers might not be optimized for cluster workers, and vice versa.
Single Program Multiple Data (spmd)

- “Execute Simultaneously on Multiple Data Sets” on page 3-2
- “Access Worker Variables with Composites” on page 3-6
- “Distribute Arrays” on page 3-11
- “Programming Tips” on page 3-14
Execute Simultaneously on Multiple Data Sets

In this section...

| “Introduction” on page 3-2 |
| “When to Use spmd” on page 3-2 |
| “Define an spmd Statement” on page 3-3 |
| “Display Output” on page 3-5 |

Introduction

The single program multiple data (spmd) language construct allows seamless interleaving of serial and parallel programming. The \texttt{spmd} statement lets you define a block of code to run simultaneously on multiple workers. Variables assigned inside the \texttt{spmd} statement on the workers allow direct access to their values from the client by reference via \textit{Composite} objects.

This chapter explains some of the characteristics of \texttt{spmd} statements and \textit{Composite} objects.

When to Use \texttt{spmd}

The “single program” aspect of \texttt{spmd} means that the identical code runs on multiple workers. You run one program in the MATLAB client, and those parts of it labeled as \texttt{spmd} blocks run on the workers. When the \texttt{spmd} block is complete, your program continues running in the client.

The “multiple data” aspect means that even though the \texttt{spmd} statement runs identical code on all workers, each worker can have different, unique data for that code. So multiple data sets can be accommodated by multiple workers.

Typical applications appropriate for \texttt{spmd} are those that require running simultaneous execution of a program on multiple data sets, when communication or synchronization is required between the workers. Some common cases are:

- Programs that take a long time to execute — \texttt{spmd} lets several workers compute solutions simultaneously.
• Programs operating on large data sets — `spmd` lets the data be distributed to multiple workers.

Define an `spmd` Statement

The general form of an `spmd` statement is:

```matlab
spmd
    <statements>
end
```

Note If a parallel pool is not running, `spmd` creates a pool using your default cluster profile, if your parallel preferences are set accordingly.

The block of code represented by `<statements>` executes in parallel simultaneously on all workers in the parallel pool. If you want to limit the execution to only a portion of these workers, specify exactly how many workers to run on:

```matlab
spmd (n)
    <statements>
end
```

This statement requires that `n` workers run the `spmd` code. `n` must be less than or equal to the number of workers in the open parallel pool. If the pool is large enough, but `n` workers are not available, the statement waits until enough workers are available. If `n` is 0, the `spmd` statement uses no workers, and runs locally on the client, the same as if there were not a pool currently running.

You can specify a range for the number of workers:

```matlab
spmd (m,n)
    <statements>
end
```

In this case, the `spmd` statement requires a minimum of `m` workers, and it uses a maximum of `n` workers.
If it is important to control the number of workers that execute your `spmd` statement, set the exact number in the cluster profile or with the `spmd` statement, rather than using a range.

For example, create a random matrix on three workers:

```matlab
spmd (3)
    R = rand(4,4);
end
```

Note All subsequent examples in this chapter assume that a parallel pool is open and remains open between sequences of `spmd` statements.

Unlike a `parfor`-loop, the workers used for an `spmd` statement each have a unique value for `labindex`. This lets you specify code to be run on only certain workers, or to customize execution, usually for the purpose of accessing unique data.

For example, create different sized arrays depending on `labindex`:

```matlab
spmd (3)
    if labindex==1
        R = rand(9,9);
    else
        R = rand(4,4);
    end
end
```

Load unique data on each worker according to `labindex`, and use the same function on each worker to compute a result from the data:

```matlab
spmd (3)
    labdata = load(['datafile_ ' num2str(labindex) '.ascii'])
    result = MyFunction(labdata)
end
```

The workers executing an `spmd` statement operate simultaneously and are aware of each other. As with a parallel job, you are allowed to directly control
Communications between the workers, transfer data between them, and use codistributed arrays among them.

For example, use a codistributed array in an `spmd` statement:

```matlab
spmd (3)
    RR = rand(30, codistributor());
end
```

Each worker has a 30-by-10 segment of the codistributed array `RR`. For more information about codistributed arrays, see “Working with Codistributed Arrays” on page 5-6.

Display Output

When running an `spmd` statement on a parallel pool, all command-line output from the workers displays in the client Command Window. Because the workers are MATLAB sessions without displays, any graphical output (for example, figure windows) from the pool does not display at all.
Access Worker Variables with Composites

In this section...

- “Introduction to Composites” on page 3-6
- “Create Composites in spmd Statements” on page 3-6
- “Variable Persistence and Sequences of spmd” on page 3-8
- “Create Composites Outside spmd Statements” on page 3-9

Introduction to Composites

Composite objects in the MATLAB client session let you directly access data values on the workers. Most often you assigned these variables within `spmd` statements. In their display and usage, Composites resemble cell arrays. There are two ways to create Composites:

- Use the `Composite` function on the client. Values assigned to the Composite elements are stored on the workers.
- Define variables on workers inside an `spmd` statement. After the `spmd` statement, the stored values are accessible on the client as Composites.

Create Composites in spmd Statements

When you define or assign values to variables inside an `spmd` statement, the data values are stored on the workers.

After the `spmd` statement, those data values are accessible on the client as Composites. Composite objects resemble cell arrays, and behave similarly. On the client, a Composite has one element per worker. For example, suppose you create a parallel pool of three local workers and run an `spmd` statement on that pool:

```matlab
parpool('local',3)
spmd  % Uses all 3 workers
    MM = magic(labindex+2); % MM is a variable on each worker
end
MM{1} % In the client, MM is a Composite with one element per worker
```
A variable might not be defined on every worker. For the workers on which a variable is not defined, the corresponding Composite element has no value. Trying to read that element throws an error.

```matlab
spmd
    if labindex > 1
        HH = rand(4);
    end
end
HH

Lab 1: No data
Lab 2: class = double, size = [4 4]
Lab 3: class = double, size = [4 4]
```

You can also set values of Composite elements from the client. This causes a transfer of data, storing the value on the appropriate worker even though it is not executed within an `spmd` statement:

```matlab
MM{3} = eye(4);
```

In this case, `MM` must already exist as a Composite, otherwise MATLAB interprets it as a cell array.

Now when you do enter an `spmd` statement, the value of the variable `MM` on worker 3 is as set:

```matlab
spmd
    if labindex == 3, MM, end
end
```
Data transfers from worker to client when you explicitly assign a variable in the client workspace using a Composite element:

\[M = MM\{1\} \]
Transfer data from worker 1 to variable M on the client

\[
\begin{align*}
8 & \quad 1 & \quad 6 \\
3 & \quad 5 & \quad 7 \\
4 & \quad 9 & \quad 2
\end{align*}
\]

Assigning an entire Composite to another Composite does not cause a data transfer. Instead, the client merely duplicates the Composite as a reference to the appropriate data stored on the workers:

\[NN = MM \]
Set entire Composite equal to another, without transfer

However, accessing a Composite’s elements to assign values to other Composites does result in a transfer of data from the workers to the client, even if the assignment then goes to the same worker. In this case, NN must already exist as a Composite:

\[NN\{1\} = MM\{1\} \]
Transfer data to the client and then to worker

When finished, you can delete the pool:

\[\text{delete(gcp)} \]

Variable Persistence and Sequences of spmd

The values stored on the workers are retained between spmd statements. This allows you to use multiple spmd statements in sequence, and continue to use the same variables defined in previous spmd blocks.

The values are retained on the workers until the corresponding Composites are cleared on the client, or until the parallel pool is deleted. The following
example illustrates data value lifespan with spmd blocks, using a pool of four workers:

```matlab
parpool('local',4)

spmd
    AA = labindex; % Initial setting
end
AA(:) % Composite

1
2
3
4

spmd
    AA = AA * 2; % Multiply existing value
end
AA(:) % Composite

2
4
6
8

clear AA % Clearing in client also clears on workers

spmd; AA = AA * 2; end % Generates error

delete(gcp)
```

Create Composites Outside spmd Statements

The `Composite` function creates Composite objects without using an `spmd` statement. This might be useful to prepopulate values of variables on workers before an `spmd` statement begins executing on those workers. Assume a parallel pool is already running:

```matlab
PP = Composite()
```
By default, this creates a Composite with an element for each worker in the parallel pool. You can also create Composites on only a subset of the workers in the pool. See the Composite reference page for more details. The elements of the Composite can now be set as usual on the client, or as variables inside an `spmd` statement. When you set an element of a Composite, the data is immediately transferred to the appropriate worker:

```matlab
for ii = 1:numel(PP)
    PP{ii} = ii;
end
```
Distribute Arrays

In this section...

“Distributed Versus Codistributed Arrays” on page 3-11
“Create Distributed Arrays” on page 3-11
“Create Codistributed Arrays” on page 3-12

Distributed Versus Codistributed Arrays

You can create a distributed array in the MATLAB client, and its data is stored on the workers of the open parallel pool. A distributed array is distributed in one dimension, along the last nonsingleton dimension, and as evenly as possible along that dimension among the workers. You cannot control the details of distribution when creating a distributed array.

You can create a codistributed array by executing on the workers themselves, either inside an spmd statement, in pmode, or inside a parallel job. When creating a codistributed array, you can control all aspects of distribution, including dimensions and partitions.

The relationship between distributed and codistributed arrays is one of perspective. Codistributed arrays are partitioned among the workers from which you execute code to create or manipulate them. Distributed arrays are partitioned among workers in the parallel pool. When you create a distributed array in the client, you can access it as a codistributed array inside an spmd statement. When you create a codistributed array in an spmd statement, you can access it as a distributed array in the client. Only spmd statements let you access the same array data from two different perspectives.

Create Distributed Arrays

You can create a distributed array in any of several ways:

- Use the distributed function to distribute an existing array from the client workspace to the workers of a parallel pool.
- Use any of the overloaded distributed object methods to directly construct a distributed array on the workers. This technique does not require
that the array already exists in the client, thereby reducing client workspace memory requirements. These overloaded functions include distributed.eye, distributed.rand, etc. For a full list, see the distributed object reference page.

- Create a codistributed array inside an spmd statement, then access it as a distributed array outside the spmd statement. This lets you use distribution schemes other than the default.

The first two of these techniques do not involve spmd in creating the array, but you can see how spmd might be used to manipulate arrays created this way. For example:

Create an array in the client workspace, then make it a distributed array:

```matlab
parpool('local',2) % Create pool
W = ones(6,6);
W = distributed(W); % Distribute to the workers
spmd
    T = W*2; % Calculation performed on workers, in parallel.
    % T and W are both codistributed arrays here.
end
T % View results in client.
whos % T and W are both distributed arrays here.
delete(gcp) % Stop pool
```

Create Codistributed Arrays

You can create a codistributed array in any of several ways:

- Use the codistributed function inside an spmd statement, a parallel job, or pmode to codistribute data already existing on the workers running that job.

- Use any of the overloaded codistributed object methods to directly construct a codistributed array on the workers. This technique does not require that the array already exists in the workers. These overloaded functions include codistributed.eye, codistributed.rand, etc. For a full list, see the codistributed object reference page.
• Create a distributed array outside an `spmd` statement, then access it as a codistributed array inside the `spmd` statement running on the same parallel pool.

In this example, you create a codistributed array inside an `spmd` statement, using a nondefault distribution scheme. First, define 1-D distribution along the third dimension, with 4 parts on worker 1, and 12 parts on worker 2. Then create a 3-by-3-by-16 array of zeros.

```matlab
parpool('local',2) % Create pool
spmd
    codist = codistributor1d(3, [4, 12]);
    Z = codistributed.zeros(3, 3, 16, codist);
    Z = Z + labindex;
end
Z % View results in client.
    % Z is a distributed array here.
delete(gcp) % Stop pool
```

For more details on codistributed arrays, see “Working with Codistributed Arrays” on page 5-6.
Programming Tips

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“MATLAB Path” on page 3-14</td>
</tr>
<tr>
<td>“Error Handling” on page 3-14</td>
</tr>
<tr>
<td>“Limitations” on page 3-14</td>
</tr>
</tbody>
</table>

MATLAB Path

All workers executing an `spmd` statement must have the same MATLAB search path as the client, so that they can execute any functions called in their common block of code. Therefore, whenever you use `cd`, `addpath`, or `rmpath` on the client, it also executes on all the workers, if possible. For more information, see the `parpool` reference page. When the workers are running on a different platform than the client, use the function `pctRunOnAll` to properly set the MATLAB path on all workers.

Error Handling

When an error occurs on a worker during the execution of an `spmd` statement, the error is reported to the client. The client tries to interrupt execution on all workers, and throws an error to the user.

Errors and warnings produced on workers are annotated with the worker ID (`labindex`) and displayed in the client’s Command Window in the order in which they are received by the MATLAB client.

The behavior of `lastwarn` is unspecified at the end of an `spmd` if used within its body.

Limitations

Transparency

The body of an `spmd` statement must be transparency, meaning that all references to variables must be “visible” (i.e., they occur in the text of the program).
In the following example, because \(X \) is not visible as an input variable in the `spmd` body (only the string 'X' is passed to `eval`), it does not get transferred to the workers. As a result, MATLAB issues an error at run time:

\[
X = 5; \\
spmd \\
\quad \text{eval('X');} \\
end
\]

Similarly, you cannot clear variables from a worker’s workspace by executing `clear` inside an `spmd` statement:

\[
spmd; \text{clear('X');} \text{end}
\]

To clear a specific variable from a worker, clear its Composite from the client workspace. Alternatively, you can free up most of the memory used by a variable by setting its value to empty, presumably when it is no longer needed in your `spmd` statement:

\[
spmd \\
\quad <\text{statements....}> \\
\quad X = []; \\
end
\]

Examples of some other functions that violate transparency are `evalc`, `evalin`, and `assignin` with the `workspace` argument specified as 'caller'; `save` and `load`, unless the output of `load` is assigned to a variable.

MATLAB does successfully execute `eval` and `evalc` statements that appear in functions called from the `spmd` body.

Nested Functions

Inside a function, the body of an `spmd` statement cannot make any direct reference to a nested function. However, it can call a nested function by means of a variable defined as a function handle to the nested function.

Because the `spmd` body executes on workers, variables that are updated by nested functions called inside an `spmd` statement do not get updated in the workspace of the outer function.
Anonymous Functions
The body of an `spmd` statement cannot define an anonymous function. However, it can reference an anonymous function by means of a function handle.

Nested `spmd` Statements
The body of an `spmd` statement cannot directly contain another `spmd`. However, it can call a function that contains another `spmd` statement. The inner `spmd` statement does not run in parallel in another parallel pool, but runs serially in a single thread on the worker running its containing function.

Nested `parfor`-Loops
The body of a `parfor`-loop cannot contain an `spmd` statement, and an `spmd` statement cannot contain a `parfor`-loop.

Break and Return Statements
The body of an `spmd` statement cannot contain `break` or `return` statements.

Global and Persistent Variables
The body of an `spmd` statement cannot contain `global` or `persistent` variable declarations.
Interactive Parallel Computation with pmode

This chapter describes interactive pmode in the following sections:

- “pmode Versus spmd” on page 4-2
- “Run Parallel Jobs Interactively Using pmode” on page 4-3
- “Parallel Command Window” on page 4-11
- “Running pmode Interactive Jobs on a Cluster” on page 4-16
- “Plotting Distributed Data Using pmode” on page 4-17
- “pmode Limitations and Unexpected Results” on page 4-19
- “pmode Troubleshooting” on page 4-20
pmode Versus spmd

pmode lets you work interactively with a parallel job running simultaneously on several workers. Commands you type at the pmode prompt in the Parallel Command Window are executed on all workers at the same time. Each worker executes the commands in its own workspace on its own variables.

The way the workers remain synchronized is that each worker becomes idle when it completes a command or statement, waiting until all the workers working on this job have completed the same statement. Only when all the workers are idle, do they then proceed together to the next pmode command.

In contrast to spmd, pmode provides a desktop with a display for each worker running the job, where you can enter commands, see results, access each worker’s workspace, etc. What pmode does not let you do is to freely interleave serial and parallel work, like spmd does. When you exit your pmode session, its job is effectively destroyed, and all information and data on the workers is lost. Starting another pmode session always begins from a clean state.
Run Parallel Jobs Interactively Using pmode

This example uses a local scheduler and runs the workers on your local MATLAB client machine. It does not require an external cluster or scheduler. The steps include the pmode prompt (P>>) for commands that you type in the Parallel Command Window.

1 Start the pmode with the pmode command.

```matlab
pmode start local 4
```

This starts four local workers, creates a parallel job to run on those workers, and opens the Parallel Command Window.

You can control where the command history appears. For this exercise, the position is set by clicking Window > History Position > Above Prompt, but you can set it according to your own preference.

2 To illustrate that commands at the pmode prompt are executed on all workers, ask for help on a function.

```matlab
P>> help magic
```
3 Set a variable at the pmode prompt. Notice that the value is set on all the workers.

P>> x = pi

A variable does not necessarily have the same value on every worker. The `labindex` function returns the ID particular to each worker working on this parallel job. In this example, the variable x exists with a different value in the workspace of each worker.

P>> x = labindex

4 Return the total number of workers working on the current parallel job with the `numlabs` function.

P>> all = numlabs
6 Create a replicated array on all the workers.

\[
P\gg \text{segment} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}
\]
Assign a unique value to the array on each worker, dependent on the worker number (labindex). With a different value on each worker, this is a variant array.

\[\text{P} \gg \text{segment} = \text{segment} + 10 \times \text{labindex} \]

8 Until this point in the example, the variant arrays are independent, other than having the same name. Use the codistributed.build function to aggregate the array segments into a coherent array, distributed among the workers.

\[\text{P} \gg \text{codist} = \text{codistributor1d}(2, [2 2 2 2], [3 8]) \]
\[\text{P} \gg \text{whole} = \text{codistributed.build} (\text{segment}, \text{codist}) \]

This combines four separate 3-by-2 arrays into one 3-by-8 codistributed array. The codistributor1d object indicates that the array is distributed along its second dimension (columns), with 2 columns on each of the four workers. On each worker, segment provided the data for the local portion of the whole array.

9 Now, when you operate on the codistributed array whole, each worker handles the calculations on only its portion, or segment, of the array, not the whole array.
Run Parallel Jobs Interactively Using pmode

\[P>> \text{whole = whole} + 1000 \]

10 Although the codistributed array allows for operations on its entirety, you can use the `getLocalPart` function to access the portion of a codistributed array on a particular worker.

\[P>> \text{section = getLocalPart(whole)} \]

Thus, `section` is now a variant array because it is different on each worker.

\[\begin{align*}
 \text{section} &= \begin{bmatrix}
 1011 & 1012 \\
 1013 & 1014 \\
 1015 & 1016
 \end{bmatrix}
 \\
 \text{section} &= \begin{bmatrix}
 1021 & 1022 \\
 1023 & 1024 \\
 1025 & 1026
 \end{bmatrix}
\end{align*} \]

\[\begin{align*}
 \text{section} &= \begin{bmatrix}
 1031 & 1032 \\
 1033 & 1034 \\
 1035 & 1036
 \end{bmatrix}
 \\
 \text{section} &= \begin{bmatrix}
 1041 & 1042 \\
 1043 & 1044 \\
 1045 & 1046
 \end{bmatrix}
\end{align*} \]

\[\text{codist = codistributor1d(2, [2 2 2 2], [3 8])}; \]
\[\text{whole = codistributed.build(segment, codist)} \]
\[\text{whole = whole} + 1000 \]
\[\text{section = getLocalPart(whole)} \]

11 If you need the entire array in one workspace, use the `gather` function.

\[P>> \text{combined = gather(whole)} \]

Notice, however, that this gathers the entire array into the workspaces of all the workers. See the `gather` reference page for the syntax to gather the array into the workspace of only one worker.

12 Because the workers ordinarily do not have displays, if you want to perform any graphical tasks involving your data, such as plotting, you must do this from the client workspace. Copy the array to the client workspace by typing the following commands in the MATLAB (client) Command Window.
pmode lab2client combined 1

Notice that combined is now a 3-by-8 array in the client workspace.

whos combined

To see the array, type its name.

combined
Many matrix functions that might be familiar can operate on codistributed arrays. For example, the `eye` function creates an identity matrix. Now you can create a codistributed identity matrix with the following commands in the Parallel Command Window.

```matlab
P>> distobj = codistributor1d();
P>> I = eye(6, distobj)
P>> getLocalPart(I)
```

Calling the `codistributor1d` function without arguments specifies the default distribution, which is by columns in this case, distributed as evenly as possible.
14 If you require distribution along a different dimension, you can use the `redistribute` function. In this example, the argument `1` to `codistributor1d` specifies distribution of the array along the first dimension (rows).

```
P>> distobj = codistributor1d(1);
P>> I = redistribute(I, distobj)
P>> getLocalPart(I)
```

![Image showing MATLAB output]

15 Exit pmode and return to the regular MATLAB desktop.

```
P>> pmode exit
```
Parallel Command Window

When you start pmode on your local client machine with the command

```plaintext
pmode start local 4
```

four workers start on your local machine and a parallel job is created to run on them. The first time you run pmode with these options, you get a tiled display of the four workers.

![Parallel Command Window diagram](image)
The Parallel Command Window offers much of the same functionality as the MATLAB desktop, including command line, output, and command history.

When you select one or more lines in the command history and right-click, you see the following context menu.

You have several options for how to arrange the tiles showing your worker outputs. Usually, you will choose an arrangement that depends on the format of your data. For example, the data displayed until this point in this section, as in the previous figure, is distributed by columns. It might be convenient to arrange the tiles side by side.
This arrangement results in the following figure, which might be more convenient for viewing data distributed by columns.

Alternatively, if the data is distributed by rows, you might want to stack the worker tiles vertically. For the following figure, the data is reformatted with the command

```
P>> distobj = codistributor('1d',1);
P>> I = redistribute(I, distobj)
```

When you rearrange the tiles, you see the following.
You can control the relative positions of the command window and the worker output. The following figure shows how to set the output to display beside the input, rather than above it.

You can choose to view the worker outputs by tabs.
You can have multiple workers send their output to the same tile or tab. This allows you to have fewer tiles or tabs than workers.

In this case, the window provides shading to help distinguish the outputs from the various workers.
Running pmode Interactive Jobs on a Cluster

When you run pmode on a cluster of workers, you are running a job that is much like any other parallel job, except it is interactive. The cluster can be heterogeneous, but with certain limitations described at http://www.mathworks.com/products/parallel-computing/requirements.html; carefully locate your scheduler on that page and note that pmode sessions run as jobs described as “parallel applications that use inter-worker communication.”

Many of the job’s properties are determined by the cluster profile. For more details about creating and using profiles, see “Clusters and Cluster Profiles” on page 6-14.

The general form of the command to start a pmode session is

```
pmode start <profile-name> <num-workers>
```

where `<profile-name>` is the name of the cluster profile you want to use, and `<num-workers>` is the number of workers you want to run the pmode job on. If `<num-workers>` is omitted, the number of workers is determined by the profile. Coordinate with your system administrator when creating or using a profile.

If you omit `<profile-name>`, pmode uses the default profile (see the parallel.defaultClusterProfile reference page).

For details on all the command options, see the pmode reference page.
Plotting Distributed Data Using pmode

Because the workers running a job in pmode are MATLAB sessions without displays, they cannot create plots or other graphic outputs on your desktop.

When working in pmode with codistributed arrays, one way to plot a codistributed array is to follow these basic steps:

1. Use the `gather` function to collect the entire array into the workspace of one worker.

2. Transfer the whole array from any worker to the MATLAB client with `pmode lab2client`.

3. Plot the data from the client workspace.

The following example illustrates this technique.

Create a 1-by-100 codistributed array of 0s. With four workers, each has a 1-by-25 segment of the whole array.

```plaintext
P>> D = zeros(1,100,codistributor1d())
```

Lab 1: This lab stores D(1:25).
Lab 2: This lab stores D(26:50).
Lab 3: This lab stores D(51:75).
Lab 4: This lab stores D(76:100).

Use a `for`-loop over the distributed range to populate the array so that it contains a sine wave. Each worker does one-fourth of the array.

```plaintext
P>> for i = drange(1:100)
    D(i) = sin(i*2*pi/100);
end;
```

Gather the array so that the whole array is contained in the workspace of worker 1.

```plaintext
P>> P = gather(D, 1);
```
Transfer the array from the workspace of worker 1 to the MATLAB client workspace, then plot the array from the client. Note that both commands are entered in the MATLAB (client) Command Window.

```
pmode lab2client P 1
plot(P)
```

This is not the only way to plot codistributed data. One alternative method, especially useful when running noninteractive parallel jobs, is to plot the data to a file, then view it from a later MATLAB session.
pmode Limitations and Unexpected Results

Using Graphics in pmode

Displaying a GUI
The workers that run the tasks of a parallel job are MATLAB sessions without displays. As a result, these workers cannot display graphical tools and so you cannot do things like plotting from within pmode. The general approach to accomplish something graphical is to transfer the data into the workspace of the MATLAB client using

```
pmode lab2client var labindex
```

Then use the graphical tool on the MATLAB client.

Using Simulink Software
Because the workers running a pmode job do not have displays, you cannot use Simulink software to edit diagrams or to perform interactive simulation from within pmode. If you type `simulink` at the pmode prompt, the Simulink Library Browser opens in the background on the workers and is not visible.

You can use the `sim` command to perform noninteractive simulations in parallel. If you edit your model in the MATLAB client outside of pmode, you must save the model before accessing it in the workers via pmode; also, if the workers had accessed the model previously, they must close and open the model again to see the latest saved changes.
pmode Troubleshooting

In this section...

- “Connectivity Testing” on page 4-20
- “Hostname Resolution” on page 4-20
- “Socket Connections” on page 4-20

Connectivity Testing
For testing connectivity between the client machine and the machines of your compute cluster, you can use Admin Center. For more information about Admin Center, including how to start it and how to test connectivity, see “Start Admin Center” and “Test Connectivity” in the MATLAB Distributed Computing Server documentation.

Hostname Resolution
If a worker cannot resolve the hostname of the computer running the MATLAB client, use `pctconfig` to change the hostname by which the client machine advertises itself.

Socket Connections
If a worker cannot open a socket connection to the MATLAB client, try the following:

- Use `pctconfig` to change the hostname by which the client machine advertises itself.
- Make sure that firewalls are not preventing communication between the worker and client machines.
- Use `pctconfig` to change the client’s `pmodeport` property. This determines the port that the workers will use to contact the client in the next pmode session.
Math with Codistributed Arrays

This chapter describes the distribution or partition of data across several workers, and the functionality provided for operations on that data in spmd statements, parallel jobs, and pmode. The sections are as follows.

- “Nondistributed Versus Distributed Arrays” on page 5-2
- “Working with Codistributed Arrays” on page 5-6
- “Looping Over a Distributed Range (for-drang)” on page 5-22
- “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-26
Nondistributed Versus Distributed Arrays

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Introduction” on page 5-2</td>
</tr>
<tr>
<td>“Nondistributed Arrays” on page 5-2</td>
</tr>
<tr>
<td>“Codistributed Arrays” on page 5-4</td>
</tr>
</tbody>
</table>

Introduction

All built-in data types and data structures supported by MATLAB software are also supported in the MATLAB parallel computing environment. This includes arrays of any number of dimensions containing numeric, character, logical values, cells, or structures; but not function handles or user-defined objects. In addition to these basic building blocks, the MATLAB parallel computing environment also offers different types of arrays.

Nondistributed Arrays

When you create a nondistributed array, MATLAB constructs a separate array in the workspace of each worker, using the same variable name on all workers. Any operation performed on that variable affects all individual arrays assigned to it. If you display from worker 1 the value assigned to this variable, all workers respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in the workspace of each worker:

- “Replicated Arrays” on page 5-2
- “Variant Arrays” on page 5-3
- “Private Arrays” on page 5-4

Replicated Arrays

A replicated array resides in the workspaces of all workers, and its size and content are identical on all workers. When you create the array, MATLAB
assigns it to the same variable on all workers. If you display in `spmd` the value assigned to this variable, all workers respond by showing the same array.

```matlab
spmd, A = magic(3), end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1 6</td>
<td>8 1 6</td>
<td>8 1 6</td>
<td>8 1 6</td>
</tr>
<tr>
<td>3 5 7</td>
<td>3 5 7</td>
<td>3 5 7</td>
<td>3 5 7</td>
</tr>
<tr>
<td>4 9 2</td>
<td>4 9 2</td>
<td>4 9 2</td>
<td>4 9 2</td>
</tr>
</tbody>
</table>

Variant Arrays

A *variant array* also resides in the workspaces of all workers, but its content differs on one or more workers. When you create the array, MATLAB assigns a different value to the same variable on all workers. If you display the value assigned to this variable, all workers respond by showing their version of the array.

```matlab
spmd, A = magic(3) + labindex - 1, end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1 6</td>
<td>9 2 7</td>
<td>10 3 8</td>
<td>11 4 9</td>
</tr>
<tr>
<td>3 5 7</td>
<td>4 6 9</td>
<td>5 7 9</td>
<td>6 8 10</td>
</tr>
<tr>
<td>4 9 2</td>
<td>5 10 3</td>
<td>6 11 4</td>
<td>7 12 5</td>
</tr>
</tbody>
</table>

A replicated array can become a variant array when its value becomes unique on each worker.

```matlab
spmd
    B = magic(3); %replicated on all workers
    B = B + labindex; %now a variant array, different on each worker
end
```
Private Arrays

A private array is defined on one or more, but not all workers. You could create this array by using `labindex` in a conditional statement, as shown here:

```
spmd
    if labindex >= 3, A = magic(3) + labindex - 1, end
end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is</td>
<td>A is</td>
<td>10 3 8</td>
<td>11 4 9</td>
</tr>
<tr>
<td>undefined</td>
<td>undefined</td>
<td>5 7 9</td>
<td>6 8 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 11 4</td>
<td>7 12 5</td>
</tr>
</tbody>
</table>

Codistributed Arrays

With replicated and variant arrays, the full content of the array is stored in the workspace of each worker. Codistributed arrays, on the other hand, are partitioned into segments, with each segment residing in the workspace of a different worker. Each worker has its own array segment to work with. Reducing the size of the array that each worker has to store and process means a more efficient use of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array `A` across four workers. The resulting array `D` is also 3-by-10 in size, but only a segment of the full array resides on each worker.

```
spmd
    A = [11:20; 21:30; 31:40];
    D = codistributed(A);
    getLocalPart(D)
end
```

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 13</td>
<td>14 15 16</td>
<td>17 18</td>
<td>19 20</td>
</tr>
<tr>
<td>21 22 23</td>
<td>24 25 26</td>
<td>27 28</td>
<td>29 30</td>
</tr>
<tr>
<td>31 32 33</td>
<td>34 35 36</td>
<td>37 38</td>
<td>39 40</td>
</tr>
</tbody>
</table>
For more details on using codistributed arrays, see “Working with Codistributed Arrays” on page 5-6.
Working with Codistributed Arrays

In this section...

“How MATLAB Software Distributes Arrays” on page 5-6
“Creating a Codistributed Array” on page 5-8
“Local Arrays” on page 5-12
“Obtaining information About the Array” on page 5-13
“Changing the Dimension of Distribution” on page 5-14
“Restoring the Full Array” on page 5-15
“Indexing into a Codistributed Array” on page 5-16
“2-Dimensional Distribution” on page 5-18

How MATLAB Software Distributes Arrays

When you distribute an array to a number of workers, MATLAB software partitions the array into segments and assigns one segment of the array to each worker. You can partition a two-dimensional array horizontally, assigning columns of the original array to the different workers, or vertically, by assigning rows. An array with N dimensions can be partitioned along any of its N dimensions. You choose which dimension of the array is to be partitioned by specifying it in the array constructor command.

For example, to distribute an 80-by-1000 array to four workers, you can partition it either by columns, giving each worker an 80-by-250 segment, or by rows, with each worker getting a 20-by-1000 segment. If the array dimension does not divide evenly over the number of workers, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns it to variable A. In doing so, each worker creates an identical array in its own workspace and assigns it to variable A, where A is local to that worker. The second command distributes A, creating a single 80-by-1000 array D that spans all four workers. Worker 1 stores columns 1 through 250, worker 2 stores columns 251 through 500, and so on. The default distribution is by the last nonsingleton dimension, thus, columns in this case of a 2-dimensional array.
spmd
 A = zeros(80, 1000);
 D = codistributed(A)
end

Lab 1: This lab stores D(:,1:250).
Lab 2: This lab stores D(:,251:500).
Lab 3: This lab stores D(:,501:750).
Lab 4: This lab stores D(:,751:1000).

Each worker has access to all segments of the array. Access to the local segment is faster than to a remote segment, because the latter requires sending and receiving data between workers and thus takes more time.

How MATLAB Displays a Codistributed Array

For each worker, the MATLAB Parallel Command Window displays information about the codistributed array, the local portion, and the codistributor. For example, an 8-by-8 identity matrix codistributed among four workers, with two columns on each worker, displays like this:

```matlab
>> spmd
    II = codistributed.eye(8)
end
Lab 1:
    This lab stores II(:,1:2).
    LocalPart: [8x2 double]
    Codistributor: [1x1 codistributor1d]
Lab 2:
    This lab stores II(:,3:4).
    LocalPart: [8x2 double]
    Codistributor: [1x1 codistributor1d]
Lab 3:
    This lab stores II(:,5:6).
    LocalPart: [8x2 double]
    Codistributor: [1x1 codistributor1d]
Lab 4:
    This lab stores II(:,7:8).
    LocalPart: [8x2 double]
    Codistributor: [1x1 codistributor1d]
```
To see the actual data in the local segment of the array, use the `getLocalPart` function.

How Much Is Distributed to Each Worker

In distributing an array of \(N \) rows, if \(N \) is evenly divisible by the number of workers, MATLAB stores the same number of rows \((N/#numlabs) \) on each worker. When this number is not evenly divisible by the number of workers, MATLAB partitions the array as evenly as possible.

MATLAB provides codistributor object properties called `Dimension` and `Partition` that you can use to determine the exact distribution of an array. See “Indexing into a Codistributed Array” on page 5-16 for more information on indexing with codistributed arrays.

Distribution of Other Data Types

You can distribute arrays of any MATLAB built-in data type, and also numeric arrays that are complex or sparse, but not arrays of function handles or object types.

Creating a Codistributed Array

You can create a codistributed array in any of the following ways:

- “Partitioning a Larger Array” on page 5-9 — Start with a large array that is replicated on all workers, and partition it so that the pieces are distributed across the workers. This is most useful when you have sufficient memory to store the initial replicated array.

- “Building from Smaller Arrays” on page 5-10 — Start with smaller variant or replicated arrays stored on each worker, and combine them so that each array becomes a segment of a larger codistributed array. This method reduces memory requirements as it lets you build a codistributed array from smaller pieces.

- “Using MATLAB Constructor Functions” on page 5-11 — Use any of the MATLAB constructor functions like `rand` or `zeros` with the `codistributor` object argument. These functions offer a quick means of constructing a codistributed array of any size in just one step.
Partitioning a Larger Array

If you have a large array already in memory that you want MATLAB to process more quickly, you can partition it into smaller segments and distribute these segments to all of the workers using the `codistributed` function. Each worker then has an array that is a fraction the size of the original, thus reducing the time required to access the data that is local to each worker.

As a simple example, the following line of code creates a 4-by-8 replicated matrix on each worker assigned to the variable `A`:

```matlab
A =
    11  12  13  14  15  16  17  18
    21  22  23  24  25  26  27  28
    31  32  33  34  35  36  37  38
    41  42  43  44  45  46  47  48
```

The next line uses the `codistributed` function to construct a single 4-by-8 matrix `D` that is distributed along the second dimension of the array:

```matlab
spmd
    D = codistributed(A);
    getLocalPart(D)
end
```

```
1: Local Part | 2: Local Part | 3: Local Part | 4: Local Part
    11  12 |  13  14 |  15  16 |  17  18
    21  22 |  23  24 |  25  26 |  27  28
    31  32 |  33  34 |  35  36 |  37  38
    41  42 |  43  44 |  45  46 |  47  48
```

Arrays `A` and `D` are the same size (4-by-8). Array `A` exists in its full size on each worker, while only a segment of array `D` exists on each worker.

```matlab
spmd, size(A), size(D), end
```

Examining the variables in the client workspace, an array that is codistributed among the workers inside an `spmd` statement, is a distributed array from the perspective of the client outside the `spmd` statement. Variables that are not codistributed inside the `spmd`, are Composites in the client outside the `spmd`.

5-9
whos
Name Size Bytes Class
A 1x4 613 Composite
D 4x8 649 distributed

See the codistributed function reference page for syntax and usage information.

Building from Smaller Arrays
The codistributed function is less useful for reducing the amount of memory required to store data when you first construct the full array in one workspace and then partition it into distributed segments. To save on memory, you can construct the smaller pieces (local part) on each worker first, and then combine them into a single array that is distributed across the workers.

This example creates a 4-by-250 variant array A on each of four workers and then uses codistributor to distribute these segments across four workers, creating a 4-by-1000 codistributed array. Here is the variant array, A:

```matlab
spmd
A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex - 1);
end
```

Now combine these segments into an array that is distributed by the first dimension (rows). The array is now 16-by-250, with a 4-by-250 segment residing on each worker:

```matlab
spmd
D = codistributed.build(A, codistributor1d(1,[4 4 4 4],[16 250]));
end
Lab 1:
  This lab stores D(1:4,:).
```
LocalPart: [4x250 double]
Codistributor: [1x1 codistributor1d]

whos

Name Size Bytes Class
A 1x4 613 Composite
D 16x250 649 distributed

You could also use replicated arrays in the same fashion, if you wanted to create a codistributed array whose segments were all identical to start with. See the codistributed function reference page for syntax and usage information.

Using MATLAB Constructor Functions

MATLAB provides several array constructor functions that you can use to build codistributed arrays of specific values, sizes, and classes. These functions operate in the same way as their nondistributed counterparts in the MATLAB language, except that they distribute the resultant array across the workers using the specified codistributor object, codist.

Constructor Functions. The codistributed constructor functions are listed here. Use the codist argument (created by the codistributor function: codist=codistributor()) to specify over which dimension to distribute the array. See the individual reference pages for these functions for further syntax and usage information.

codistributed.cell(m, n, ..., codist)
codistributed.colon(a, d, b)
codistributed.eye(m, ..., classname, codist)
codistributed.false(m, n, ..., codist)
codistributed.Inf(m, n, ..., classname, codist)
codistributed.linspace(m, n, ..., codist)
codistributed.logspace(m, n, ..., codist)
codistributed.NaN(m, n, ..., classname, codist)
codistributed.ones(m, n, ..., classname, codist)
codistributed.rand(m, n, ..., codist)
codistributed.randn(m, n, ..., codist)
sparse(m, n, codist)
codistributed.speye(m, ..., codist)
Local Arrays
That part of a codistributed array that resides on each worker is a piece of a larger array. Each worker can work on its own segment of the common array, or it can make a copy of that segment in a variant or private array of its own. This local copy of a codistributed array segment is called a local array.

Creating Local Arrays from a Codistributed Array
The getLocalPart function copies the segments of a codistributed array to a separate variant array. This example makes a local copy L of each segment of codistributed array D. The size of L shows that it contains only the local part of D for each worker. Suppose you distribute an array across four workers:

```
spmd(4)
    A = [1:80; 81:160; 161:240];
    D = codistributed(A);
    size(D)
        L = getLocalPart(D);
    size(L)
end
```

returns on each worker:

```
3 80
3 20
```

Each worker recognizes that the codistributed array D is 3-by-80. However, notice that the size of the local part, L, is 3-by-20 on each worker, because the 80 columns of D are distributed over four workers.

Creating a Codistributed from Local Arrays
Use the codistributed function to perform the reverse operation. This function, described in “Building from Smaller Arrays” on page 5-10, combines
the local variant arrays into a single array distributed along the specified dimension.

Continuing the previous example, take the local variant arrays L and put them together as segments to build a new codistributed array X.

```matlab
spmd
codist = codistributor1d(2,[20 20 20],[3 80]);
X = codistributed.build(L, codist);
size(X)
end
```

returns on each worker:

```
3 80
```

Obtaining information About the Array
MATLAB offers several functions that provide information on any particular array. In addition to these standard functions, there are also two functions that are useful solely with codistributed arrays.

Determining Whether an Array Is Codistributed
The `iscodistributed` function returns a logical 1 (true) if the input array is codistributed, and logical 0 (false) otherwise. The syntax is

```matlab
spmd, TF = iscodistributed(D), end
```

where `D` is any MATLAB array.

Determining the Dimension of Distribution
The `getCodistributor` object determines how an array is partitioned and its dimension of distribution. To access the codistributor of an array, use the `getCodistributor` function. This returns two properties, `Dimension` and `Partition`:

```matlab
spmd, getCodistributor(X), end
    Dimension: 2
    Partition: [20 20 20 20]
```

5-13
The dimension value of 2 means the array X is distributed by columns (dimension 2); and the partition value of [20 20 20 20] means that twenty columns reside on each of the four workers.

To get these properties programmatically, return the output of getcodistributor to a variable, then use dot notation to access each property:

```matlab
spmd
C = getcodistributor(X);
part = C.Partition
dim = C.Dimension
end
```

Other Array Functions

Other functions that provide information about standard arrays also work on codistributed arrays and use the same syntax.

- `length` — Returns the length of a specific dimension.
- `ndims` — Returns the number of dimensions.
- `numel` — Returns the number of elements in the array.
- `size` — Returns the size of each dimension.
- `is*` — Many functions that have names beginning with 'is', such as ischar and issparse.

Changing the Dimension of Distribution

When constructing an array, you distribute the parts of the array along one of the array's dimensions. You can change the direction of this distribution on an existing array using the redistribute function with a different codistributor object.

Construct an 8-by-16 codistributed array D of random values distributed by columns on four workers:

```matlab
spmd
D = rand(8, 16, codistributor());
```
size(getLocalPart(D))
end

returns on each worker:

8 4

Create a new codistributed array distributed by rows from an existing one already distributed by columns:

spmd
X = redistribute(D, codistributor1d(1));
size(getLocalPart(X))
end

returns on each worker:

2 16

Restoring the Full Array
You can restore a codistributed array to its undistributed form using the gather function. gather takes the segments of an array that reside on different workers and combines them into a replicated array on all workers, or into a single array on one worker.

Distribute a 4-by-10 array to four workers along the second dimension:

spmd, A = [11:20; 21:30; 31:40; 41:50], end
A =
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

spmd, D = codistributed(A), end

<table>
<thead>
<tr>
<th>WORKER 1</th>
<th>WORKER 2</th>
<th>WORKER 3</th>
<th>WORKER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 13</td>
<td>14 15 16</td>
<td>17 18 19</td>
<td>20 21 22</td>
</tr>
<tr>
<td>21 22 23</td>
<td>24 25 26</td>
<td>27 28 29</td>
<td>30 31 32</td>
</tr>
<tr>
<td>31 32 33</td>
<td>34 35 36</td>
<td>37 38 39</td>
<td>40 41 42</td>
</tr>
</tbody>
</table>
spmd, size(getLocalPart(D)), end

Lab 1:
 4 3
Lab 2:
 4 3
Lab 3:
 4 2
Lab 4:
 4 2

Restore the undistributed segments to the full array form by gathering the segments:

spmd, X = gather(D), end

X =
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50

spmd, size(X), end
 4 10

Indexing into a Codistributed Array

While indexing into a nondistributed array is fairly straightforward, codistributed arrays require additional considerations. Each dimension of a nondistributed array is indexed within a range of 1 to the final subscript, which is represented in MATLAB by the `end` keyword. The length of any dimension can be easily determined using either the `size` or `length` function.

With codistributed arrays, these values are not so easily obtained. For example, the second segment of an array (that which resides in the workspace of worker 2) has a starting index that depends on the array distribution. For a 200-by-1000 array with a default distribution by columns over four workers, the starting index on worker 2 is 251. For a 1000-by-200 array also distributed by columns, that same index would be 51. As for the ending index, this is not given by using the `end` keyword, as `end` in this case refers to the end...
of the entire array; that is, the last subscript of the final segment. The length of each segment is also not given by using the \texttt{length} or \texttt{size} functions, as they only return the length of the entire array.

The MATLAB \texttt{colon} operator and \texttt{end} keyword are two of the basic tools for indexing into nondistributed arrays. For codistributed arrays, MATLAB provides a version of the \texttt{colon} operator, called \texttt{codistributed.colon}. This actually is a function, not a symbolic operator like \texttt{colon}.

\textbf{Note} When using arrays to index into codistributed arrays, you can use only replicated or codistributed arrays for indexing. The toolbox does not check to ensure that the index is replicated, as that would require global communications. Therefore, the use of unsupported variants (such as \texttt{labindex}) to index into codistributed arrays might create unexpected results.

\section*{Example: Find a Particular Element in a Codistributed Array}

Suppose you have a row vector of 1 million elements, distributed among several workers, and you want to locate its element number 225,000. That is, you want to know what worker contains this element, and in what position in the local part of the vector on that worker. The \texttt{globalIndices} function provides a correlation between the local and global indexing of the codistributed array.

\begin{verbatim}
D = distributed.rand(1,1e6); %Distributed by columns
spmd
 globalInd = globalIndices(D,2);
pos = find(globalInd == 225e3);
 if ~isempty(pos)
 fprintf(...
 'Element is in position %d on worker %d.
', pos, labindex);
 end
end
\end{verbatim}

If you run this code on a pool of four workers you get this result:

\begin{verbatim}
Lab 1:
 Element is in position 225000 on worker 1.
\end{verbatim}
If you run this code on a pool of five workers you get this result:

Lab 2:
 Element is in position 25000 on worker 2.

Notice if you use a pool of a different size, the element ends up in a different location on a different worker, but the same code can be used to locate the element.

2-Dimensional Distribution
As an alternative to distributing by a single dimension of rows or columns, you can distribute a matrix by blocks using '2dbc' or two-dimensional block-cyclic distribution. Instead of segments that comprise a number of complete rows or columns of the matrix, the segments of the codistributed array are 2-dimensional square blocks.

For example, consider a simple 8-by-8 matrix with ascending element values. You can create this array in an spmd statement, parallel job, or pmode. This example uses pmode for a visual display.

P>> A = reshape(1:64, 8, 8)

The result is the replicated array:

1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63
8 16 24 32 40 48 56 64
Suppose you want to distribute this array among four workers, with a 4-by-4 block as the local part on each worker. In this case, the lab grid is a 2-by-2 arrangement of the workers, and the block size is a square of four elements on a side (i.e., each block is a 4-by-4 square). With this information, you can define the codistributor object:

```matlab
P>> DIST = codistributor2dbc([2 2], 4)
```

Now you can use this codistributor object to distribute the original matrix:

```matlab
P>> AA = codistributed(A, DIST)
```

This distributes the array among the workers according to this scheme:

```
<table>
<thead>
<tr>
<th>LAB 1</th>
<th>LAB 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
</tbody>
</table>
```

If the lab grid does not perfectly overlay the dimensions of the codistributed array, you can still use '2dbc' distribution, which is block cyclic. In this case, you can imagine the lab grid being repeatedly overlaid in both dimensions until all the original matrix elements are included.

Using the same original 8-by-8 matrix and 2-by-2 lab grid, consider a block size of 3 instead of 4, so that 3-by-3 square blocks are distributed among the workers. The code looks like this:

```matlab
P>> DIST = codistributor2dbc([2 2], 3)
```
P>> AA = codistributed(A, DIST)

The first “row” of the lab grid is distributed to worker 1 and worker 2, but that contains only six of the eight columns of the original matrix. Therefore, the next two columns are distributed to worker 1. This process continues until all columns in the first rows are distributed. Then a similar process applies to the rows as you proceed down the matrix, as shown in the following distribution scheme:

The diagram above shows a scheme that requires four overlays of the lab grid to accommodate the entire original matrix. The following pmode session shows the code and resulting distribution of data to each of the workers:
The following points are worth noting:

- '2dbc' distribution might not offer any performance enhancement unless the block size is at least a few dozen. The default block size is 64.
- The lab grid should be as close to a square as possible.
- Not all functions that are enhanced to work on '1d' codistributed arrays work on '2dbc' codistributed arrays.
Looping Over a Distributed Range (for-drangen)

In this section...

“Parallelizing a for-Loop” on page 5-22
“Codistributed Arrays in a for-drangen Loop” on page 5-23

Note Using a for-loop over a distributed range (drangen) is intended for explicit indexing of the distributed dimension of codistributed arrays (such as inside an **spmd** statement or a parallel job). For most applications involving parallel for-loops you should first try using **parfor** loops. See “Parallel for-Loops (parfor)”.

Parallelizing a for-Loop

If you already have a coarse-grained application to perform, but you do not want to bother with the overhead of defining jobs and tasks, you can take advantage of the ease-of-use that pmode provides. Where an existing program might take hours or days to process all its independent data sets, you can shorten that time by distributing these independent computations over your cluster.

For example, suppose you have the following serial code:

```matlab
results = zeros(1, numDataSets);
for i = 1:numDataSets
    load(['\central\myData\dataSet' int2str(i) '.mat'])
    results(i) = processDataSet(i);
end
plot(1:numDataSets, results);
save \central\myResults\today.mat results
```

The following changes make this code operate in parallel, either interactively in **spmd** or pmode, or in a parallel job:

```matlab
results = zeros(1, numDataSets, codistributor());
for i = drange(1:numDataSets)
    load(['\central\myData\dataSet' int2str(i) '.mat'])
```
results(i) = processDataSet(i);
end
res = gather(results, 1);
if labindex == 1
 plot(1:numDataSets, res);
 print -dtiff -r300 fig.tiff;
 save "\central\myResults\today.mat" res
end

Note that the length of the for iteration and the length of the codistributed array results need to match in order to index into results within a for drange loop. This way, no communication is required between the workers. If results was simply a replicated array, as it would have been when running the original code in parallel, each worker would have assigned into its part of results, leaving the remaining parts of results 0. At the end, results would have been a variant, and without explicitly calling labSend and labReceive or gcat, there would be no way to get the total results back to one (or all) workers.

When using the load function, you need to be careful that the data files are accessible to all workers if necessary. The best practice is to use explicit paths to files on a shared file system.

Correspondingly, when using the save function, you should be careful to only have one worker save to a particular file (on a shared file system) at a time. Thus, wrapping the code in if labindex == 1 is recommended.

Because results is distributed across the workers, this example uses gather to collect the data onto worker 1.

A worker cannot plot a visible figure, so the print function creates a viewable file of the plot.

Codistributed Arrays in a for-drange Loop

When a for-loop over a distributed range is executed in a parallel job, each worker performs its portion of the loop, so that the workers are all working simultaneously. Because of this, no communication is allowed between the workers while executing a for-drange loop. In particular, a worker has access only to its partition of a codistributed array. Any calculations in such a loop
that require a worker to access portions of a codistributed array from another worker will generate an error.

To illustrate this characteristic, you can try the following example, in which one for loop works, but the other does not.

At the pmode prompt, create two codistributed arrays, one an identity matrix, the other set to zeros, distributed across four workers.

[D = eye(8, 8, codistributor());
E = zeros(8, 8, codistributor());]

By default, these arrays are distributed by columns; that is, each of the four workers contains two columns of each array. If you use these arrays in a \texttt{for-drange} loop, any calculations must be self-contained within each worker. In other words, you can only perform calculations that are limited within each worker to the two columns of the arrays that the workers contain.

For example, suppose you want to set each column of array \(E\) to some multiple of the corresponding column of array \(D\):

\[
\text{for } j = \text{drange}(1: \text{size}(D,2)); \ E(:,j) = j*\text{D}(:,j); \ \text{end}
\]

This statement sets the \(j\)-th column of \(E\) to \(j\) times the \(j\)-th column of \(D\). In effect, while \(D\) is an identity matrix with 1s down the main diagonal, \(E\) has the sequence 1, 2, 3, etc., down its main diagonal.

This works because each worker has access to the entire column of \(D\) and the entire column of \(E\) necessary to perform the calculation, as each worker works independently and simultaneously on two of the eight columns.

Suppose, however, that you attempt to set the values of the columns of \(E\) according to different columns of \(D\):

\[
\text{for } j = \text{drange}(1: \text{size}(D,2)); \ E(:,j) = j*\text{D}(:,j+1); \ \text{end}
\]

This method fails, because when \(j\) is 2, you are trying to set the second column of \(E\) using the third column of \(D\). These columns are stored in different workers, so an error occurs, indicating that communication between the workers is not allowed.
Restrictions

To use `for-drange` on a codistributed array, the following conditions must exist:

- The codistributed array uses a 1-dimensional distribution scheme (not 2dbc).
- The distribution complies with the default partition scheme.
- The variable over which the `for-drange` loop is indexing provides the array subscript for the distribution dimension.
- All other subscripts can be chosen freely (and can be taken from `for-loops` over the full range of each dimension).

To loop over all elements in the array, you can use `for-drange` on the dimension of distribution, and regular `for-loops` on all other dimensions. The following example executes in an `spmd` statement running on a parallel pool of 4 workers:

```
spmd
    PP = codistributed.zeros(6,8,12);
    RR = rand(6,8,12,codistributor())
    % Default distribution:
    % by third dimension, evenly across 4 workers.

    for ii = 1:6
        for jj = 1:8
            for kk = drange(1:12)
                PP(ii,jj,kk) = RR(ii,jj,kk) + labindex;
            end
        end
    end
end
```

To view the contents of the array, type:

```
PP
```
MATLAB Functions on Distributed and Codistributed Arrays

Many functions in MATLAB software are enhanced or overloaded so that they operate on codistributed arrays in much the same way that they operate on arrays contained in a single workspace.

In most cases, if any of the input arguments to these functions is a distributed or codistributed array, their output arrays are distributed or codistributed, respectively. If the output is always scalar, it is replicated on each worker. All these overloaded functions with codistributed array inputs must reference the same inputs at the same time on all workers; therefore, you cannot use variant arrays for input arguments.

A few of these functions might exhibit certain limitations when operating on a codistributed array. To see if any function has different behavior when used with a codistributed array, type

```
help codistributed/functionname
```

For example,

```
help codistributed/normest
```

The following table lists the enhanced MATLAB functions that operate on distributed or codistributed arrays.

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>cast</td>
<td>exp</td>
<td>le (<=)</td>
<td>nzmax</td>
<td>sparse</td>
<td></td>
</tr>
<tr>
<td>acos</td>
<td>cat</td>
<td>expm1</td>
<td>length</td>
<td>ones</td>
<td>spfun</td>
<td></td>
</tr>
<tr>
<td>acosd</td>
<td>ceil</td>
<td>false</td>
<td>log</td>
<td>or (</td>
<td>)</td>
<td>spones</td>
<td></td>
</tr>
<tr>
<td>acosh</td>
<td>cell2mat</td>
<td>fieldnames</td>
<td>log10</td>
<td>permute</td>
<td>sqrt</td>
<td></td>
</tr>
<tr>
<td>acot</td>
<td>cell2struct</td>
<td>fft</td>
<td>log1p</td>
<td>plus (+)</td>
<td>struct2cell</td>
<td></td>
</tr>
<tr>
<td>acotd</td>
<td>celldisp</td>
<td>find</td>
<td>log2</td>
<td>pow2</td>
<td>subsasgn</td>
<td></td>
</tr>
<tr>
<td>acoth</td>
<td>cellfun</td>
<td>fix</td>
<td>logical</td>
<td>power (^)</td>
<td>subsindex</td>
<td></td>
</tr>
<tr>
<td>acsc</td>
<td>char</td>
<td>floor</td>
<td>lt (<)</td>
<td>prod</td>
<td>subsref</td>
<td></td>
</tr>
<tr>
<td>acscd</td>
<td>chol</td>
<td>full</td>
<td>lu</td>
<td>qr</td>
<td>sum</td>
<td></td>
</tr>
<tr>
<td>acsch</td>
<td>complex</td>
<td>ge (>=)</td>
<td>max</td>
<td>rdivide (/)</td>
<td>svd</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>conj</td>
<td>gt (>)</td>
<td>meshgrid</td>
<td>real</td>
<td>swapbytes</td>
<td></td>
</tr>
<tr>
<td>and (&)</td>
<td>cos</td>
<td>horzcat ([])</td>
<td>min</td>
<td>reallog</td>
<td>tan</td>
<td></td>
</tr>
<tr>
<td>angle</td>
<td>cosd</td>
<td>hypot</td>
<td>minus (-)</td>
<td>realpow</td>
<td>tand</td>
<td></td>
</tr>
<tr>
<td>any</td>
<td>cosh</td>
<td>imag</td>
<td>mldivide ()</td>
<td>realsqrt</td>
<td>tanh</td>
<td></td>
</tr>
<tr>
<td>MATLAB® Functions on Distributed and Codistributed Arrays</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>arrayfun</td>
<td>cot</td>
<td>inf</td>
<td>mdivide (/)</td>
<td>rem</td>
<td></td>
</tr>
<tr>
<td>asec</td>
<td>cotd</td>
<td>int16</td>
<td>mtimes (*)</td>
<td>repmat</td>
<td></td>
</tr>
<tr>
<td>asecd</td>
<td>coth</td>
<td>int32</td>
<td>mod</td>
<td>reshape</td>
<td></td>
</tr>
<tr>
<td>asech</td>
<td>csc</td>
<td>int64</td>
<td>nan</td>
<td>rmfield</td>
<td></td>
</tr>
<tr>
<td>asin</td>
<td>csd</td>
<td>int8</td>
<td>ndims</td>
<td>round</td>
<td></td>
</tr>
<tr>
<td>asind</td>
<td>inv</td>
<td>inv</td>
<td>sec</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>asinh</td>
<td>itranspose ('')</td>
<td>ipermute</td>
<td>secd</td>
<td>typecast</td>
<td></td>
</tr>
<tr>
<td>atan</td>
<td>cumprod</td>
<td>isempty</td>
<td>sech</td>
<td>uint16</td>
<td></td>
</tr>
<tr>
<td>atan2</td>
<td>cumsum</td>
<td>isequal</td>
<td>norm</td>
<td>uint32</td>
<td></td>
</tr>
<tr>
<td>atan2d</td>
<td>diag</td>
<td>isequaln</td>
<td>normest</td>
<td>uint64</td>
<td></td>
</tr>
<tr>
<td>atand</td>
<td>dot</td>
<td>isnan</td>
<td>single</td>
<td>uint8</td>
<td></td>
</tr>
<tr>
<td>atanh</td>
<td>double</td>
<td>isinf</td>
<td>sind</td>
<td>uminus (-)</td>
<td></td>
</tr>
<tr>
<td>bitand</td>
<td>eps</td>
<td>isreal</td>
<td>sinh</td>
<td>uplus (+)</td>
<td></td>
</tr>
<tr>
<td>bitor</td>
<td>eig</td>
<td>issparse</td>
<td>size</td>
<td>vertcat ([];)</td>
<td></td>
</tr>
<tr>
<td>bitxor</td>
<td>end</td>
<td>ldivide ()</td>
<td>sort</td>
<td>xor</td>
<td></td>
</tr>
<tr>
<td>bsxfun</td>
<td>eq (==)</td>
<td>numel</td>
<td>sortrows</td>
<td>zeros</td>
<td></td>
</tr>
</tbody>
</table>
Programming Overview

This chapter provides information you need for programming with Parallel Computing Toolbox software. Further details of evaluating functions in a cluster, programming distributed jobs, and programming parallel jobs are covered in later chapters. This chapter describes features common to programming all kinds of jobs. The sections are as follows.

- “How Parallel Computing Products Run a Job” on page 6-2
- “Create Simple Independent Jobs” on page 6-10
- “Parallel Preferences” on page 6-12
- “Clusters and Cluster Profiles” on page 6-14
- “Job Monitor” on page 6-26
- “Programming Tips” on page 6-29
- “Control Random Number Streams” on page 6-34
- “Profiling Parallel Code” on page 6-40
- “Benchmarking Performance” on page 6-51
- “Troubleshooting and Debugging” on page 6-52
How Parallel Computing Products Run a Job

In this section...

“Overview” on page 6-2
“Toolbox and Server Components” on page 6-3
“Life Cycle of a Job” on page 6-8

Overview

Parallel Computing Toolbox and MATLAB Distributed Computing Server software let you solve computationally and data-intensive problems using MATLAB and Simulink on multicore and multiprocessor computers. Parallel processing constructs such as parallel for-loops and code blocks, distributed arrays, parallel numerical algorithms, and message-passing functions let you implement task-parallel and data-parallel algorithms at a high level in MATLAB without programming for specific hardware and network architectures.

A job is some large operation that you need to perform in your MATLAB session. A job is broken down into segments called tasks. You decide how best to divide your job into tasks. You could divide your job into identical tasks, but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the client session. Often, this is on the machine where you program MATLAB. The client uses Parallel Computing Toolbox software to perform the definition of jobs and tasks and to run them on a cluster local to your machine. MATLAB Distributed Computing Server software is the product that performs the execution of your job on a cluster of machines.

The MATLAB job scheduler (MJS) is the process that coordinates the execution of jobs and the evaluation of their tasks. The MJS distributes the tasks for evaluation to the server’s individual MATLAB sessions called workers. Use of the MJS to access a cluster is optional; the distribution of tasks to cluster workers can also be performed by a third-party scheduler, such as Microsoft® Windows HPC Server (including CCS) or Platform LSF®.
See the “Glossary” on page Glossary-1 for definitions of the parallel computing terms used in this manual.

Basic Parallel Computing Setup

Toolbox and Server Components

- “MJS, Workers, and Clients” on page 6-3
- “Local Cluster” on page 6-5
- “Third-Party Schedulers” on page 6-5
- “Components on Mixed Platforms or Heterogeneous Clusters” on page 6-7
- “mdce Service” on page 6-7
- “Components Represented in the Client” on page 6-7

MJS, Workers, and Clients

The MJS can be run on any machine on the network. The MJS runs jobs in the order in which they are submitted, unless any jobs in its queue are promoted, demoted, canceled, or deleted.
Each worker is given a task from the running job by the MJS, executes the task, returns the result to the MJS, and then is given another task. When all tasks for a running job have been assigned to workers, the MJS starts running the next job on the next available worker.

A MATLAB Distributed Computing Server software setup usually includes many workers that can all execute tasks simultaneously, speeding up execution of large MATLAB jobs. It is generally not important which worker executes a specific task. In an independent job, the workers evaluate tasks one at a time as available, perhaps simultaneously, perhaps not, returning the results to the MJS. In a communicating job, the workers evaluate tasks simultaneously. The MJS then returns the results of all the tasks in the job to the client session.

Note For testing your application locally or other purposes, you can configure a single computer as client, worker, and MJS host. You can also have more than one worker session or more than one MJS session on a machine.

Interactions of Parallel Computing Sessions

A large network might include several MJSs as well as several client sessions. Any client session can create, run, and access jobs on any MJS, but a worker session is registered with and dedicated to only one MJS at a time. The following figure shows a configuration with multiple MJSs.
Cluster with Multiple Clients and MJSs

Local Cluster
A feature of Parallel Computing Toolbox software is the ability to run a local scheduler and a cluster of up to twelve workers on the client machine, so that you can run jobs without requiring a remote cluster or MATLAB Distributed Computing Server software. In this case, all the processing required for the client, scheduling, and task evaluation is performed on the same computer. This gives you the opportunity to develop, test, and debug your parallel applications before running them on your cluster.

Third-Party Schedulers
As an alternative to using the MJS, you can use a third-party scheduler. This could be a Microsoft Windows HPC Server (including CCS), Platform LSF scheduler, PBS Pro® scheduler, TORQUE scheduler, or a generic scheduler.

Choosing Between a Third-Party Scheduler and an MJS. You should consider the following when deciding to use a third-party scheduler or the MATLAB job scheduler (MJS) for distributing your tasks:

- Does your cluster already have a scheduler?

 If you already have a scheduler, you may be required to use it as a means of controlling access to the cluster. Your existing scheduler might be
just as easy to use as an MJS, so there might be no need for the extra administration involved.

- Is the handling of parallel computing jobs the only cluster scheduling management you need?

 The MJS is designed specifically for MathWorks® parallel computing applications. If other scheduling tasks are not needed, a third-party scheduler might not offer any advantages.

- Is there a file sharing configuration on your cluster already?

 The MJS can handle all file and data sharing necessary for your parallel computing applications. This might be helpful in configurations where shared access is limited.

- Are you interested in batch mode or managed interactive processing?

 When you use an MJS, worker processes usually remain running at all times, dedicated to their MJS. With a third-party scheduler, workers are run as applications that are started for the evaluation of tasks, and stopped when their tasks are complete. If tasks are small or take little time, starting a worker for each one might involve too much overhead time.

- Are there security concerns?

 Your own scheduler might be configured to accommodate your particular security requirements.

- How many nodes are on your cluster?

 If you have a large cluster, you probably already have a scheduler. Consult your MathWorks representative if you have questions about cluster size and the MJS.

- Who administers your cluster?

 The person administering your cluster might have a preference for how jobs are scheduled.

- Do you need to monitor your job’s progress or access intermediate data?

 A job run by the MJS supports events and callbacks, so that particular functions can run as each job and task progresses from one state to another.
Components on Mixed Platforms or Heterogeneous Clusters
Parallel Computing Toolbox software and MATLAB Distributed Computing Server software are supported on Windows®, UNIX®, and Macintosh operating systems. Mixed platforms are supported, so that the clients, MJS, and workers do not have to be on the same platform. The cluster can also be comprised of both 32-bit and 64-bit machines, so long as your data does not exceed the limitations posed by the 32-bit systems. Other limitations are described at http://www.mathworks.com/products/parallel-computing/requirements.html.

In a mixed-platform environment, system administrators should be sure to follow the proper installation instructions for the local machine on which you are installing the software.

mdce Service
If you are using the MJS, every machine that hosts a worker or MJS session must also run the mdce service.

The mdce service controls the worker and MJS sessions and recovers them when their host machines crash. If a worker or MJS machine crashes, when the mdce service starts up again (usually configured to start at machine boot time), it automatically restarts the MJS and worker sessions to resume their sessions from before the system crash. More information about the mdce service is available in the MATLAB Distributed Computing Server documentation.

Components Represented in the Client
A client session communicates with the MJS by calling methods and configuring properties of an MJS cluster object. Though not often necessary, the client session can also access information about a worker session through a worker object.

When you create a job in the client session, the job actually exists in the MJS job storage location. The client session has access to the job through a job object. Likewise, tasks that you define for a job in the client session exist in the MJS data location, and you access them through task objects.
Life Cycle of a Job

When you create and run a job, it progresses through a number of stages. Each stage of a job is reflected in the value of the job object’s State property, which can be pending, queued, running, or finished. Each of these stages is briefly described in this section.

The figure below illustrates the stages in the life cycle of a job. In the MJS (or other scheduler), the jobs are shown categorized by their state. Some of the functions you use for managing a job are createJob, submit, and fetchOutputs.

![Diagram of job life cycle]

<table>
<thead>
<tr>
<th>Job Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pending</td>
<td>You create a job on the scheduler with the createJob function in your client session of Parallel Computing Toolbox software. The job’s first state is pending. This is when you define the job by adding tasks to it.</td>
</tr>
<tr>
<td>Queued</td>
<td>When you execute the submit function on a job, the MJS or scheduler places the job in the queue, and the job’s state is queued. The scheduler executes jobs in the queue in the sequence in which they are submitted, all jobs moving up the queue as the jobs before them are finished. You can change the sequence of the jobs in the queue with the promote and demote functions.</td>
</tr>
<tr>
<td>Job Stage</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Running</td>
<td>When a job reaches the top of the queue, the scheduler distributes the job's tasks to worker sessions for evaluation. The job's state is now running. If more workers are available than are required for a job's tasks, the scheduler begins executing the next job. In this way, there can be more than one job running at a time.</td>
</tr>
<tr>
<td>Finished</td>
<td>When all of a job's tasks have been evaluated, the job is moved to the finished state. At this time, you can retrieve the results from all the tasks in the job with the function <code>fetchOutputs</code>.</td>
</tr>
<tr>
<td>Failed</td>
<td>When using a third-party scheduler, a job might fail if the scheduler encounters an error when attempting to execute its commands or access necessary files.</td>
</tr>
<tr>
<td>Deleted</td>
<td>When a job's data has been removed from its data location or from the MJS with the <code>delete</code> function, the state of the job in the client is deleted. This state is available only as long as the job object remains in the client.</td>
</tr>
</tbody>
</table>

Note that when a job is finished, its data remains in the MJS's `JobStorageLocation` folder, even if you clear all the objects from the client session. The MJS or scheduler keeps all the jobs it has executed, until you restart the MJS in a clean state. Therefore, you can retrieve information from a job later or in another client session, so long as the MJS has not been restarted with the `-clean` option.

You can permanently remove completed jobs from the MJS or scheduler's storage location using the Job Monitor GUI or the `delete` function.
Create Simple Independent Jobs

Program a Job on a Local Cluster

In some situations, you might need to define the individual tasks of a job, perhaps because they might evaluate different functions or have uniquely structured arguments. To program a job like this, the typical Parallel Computing Toolbox client session includes the steps shown in the following example.

This example illustrates the basic steps in creating and running a job that contains a few simple tasks. Each task evaluates the `sum` function for an input array.

1 Identify a cluster. Use `parallel.defaultClusterProfile` to indicate that you are using the local cluster; and use `parcluster` to create the object `c` to represent this cluster. (For more information, see “Create a Cluster Object” on page 7-4.)

   ```matlab
   parallel.defaultClusterProfile('local');
   c = parcluster();
   ```

2 Create a job. Create job `j` on the cluster. (For more information, see “Create a Job” on page 7-4.)

   ```matlab
   j = createJob(c)
   ```

3 Create three tasks within the job `j`. Each task evaluates the `sum` of the array that is passed as an input argument. (For more information, see “Create Tasks” on page 7-5.)

   ```matlab
   createTask(j, @sum, 1, {[1 1]});
   createTask(j, @sum, 1, {[2 2]});
   createTask(j, @sum, 1, {[3 3]});
   ```

4 Submit the job to the queue for evaluation. The scheduler then distributes the job’s tasks to MATLAB workers that are available for evaluating. The local scheduler actually starts a MATLAB worker session for each task, up to twelve at one time. (For more information, see “Submit a Job to the Cluster” on page 7-6.)
submit(j);

5 Wait for the job to complete, then get the results from all the tasks of the job. (For more information, see “Fetch the Job’s Results” on page 7-6.)

wait(j)
results = fetchOutputs(j)
results =
 [2]
 [4]
 [6]

6 Delete the job. When you have the results, you can permanently remove the job from the scheduler’s storage location.

delete(j)
Parallel Preferences

You can access parallel preferences in the general preferences for MATLAB. To open the Preferences dialog box, use any one of the following:

- On the Home tab in the Environment section, click Parallel > Parallel Preferences
- Click the desktop pool indicator icon, and select Parallel preferences.
- In the command window, type preferences

In the navigation tree of the Preferences dialog box, click Parallel Computing Toolbox.

The parallel preferences dialog box looks something like this:

You can control the following with your preference settings:

- Current Cluster — This is the default on which a pool is opened when you do not otherwise specify a cluster.
- Preferred number of workers — This specifies the number of workers to form a pool, if possible. The actual pool size might be limited by licensing, cluster size, and cluster profile settings.
• Automatically create a parallel pool — This setting causes a pool to automatically start if one is not already running at the time a parallel language is encountered that runs on a pool, such as:
 - parfor
 - spmd
 - distributed
 - Composite
 - parfeval
 - parfevalOnAll

With this setting, you never need to manually open a pool with the `parpool` function. If a pool automatically opens, you can still access the pool object with `gcp`.

• Shut down and delete a parallel pool — This setting causes a parallel pool to automatically shut down if the pool has been idle for the specified amount of time. Whenever the pool is used (for example, with a `parfor` or `parfeval`), the timeout counter is reset. When the timeout is about to expire, a tooltip on the desktop pool indicator warns you, and lets you extend the timeout.
Clusters and Cluster Profiles

In this section...

“Cluster Profile Manager” on page 6-14
“Discover Clusters” on page 6-14
“Import and Export Cluster Profiles” on page 6-16
“Create and Modify Cluster Profiles” on page 6-18
“Validate Cluster Profiles” on page 6-22
“Apply Cluster Profiles in Client Code” on page 6-24

Cluster Profile Manager

Cluster profiles let you define certain properties for your cluster, then have these properties applied when you create cluster, job, and task objects in the MATLAB client. Some of the functions that support the use of cluster profiles are

- batch
- parpool
- parcluster

To create, edit, and import cluster profiles, you can do this from the Cluster Profile Manager. To open the Cluster Profile Manager, on the Home tab in the Environment section, click Parallel > Manage Cluster Profiles.

Discover Clusters

You can let MATLAB discover clusters for you. Use either of the following techniques to discover those clusters which are available for you to use:
• On the **Home** tab in the **Environment** section, click **Parallel > Discover Clusters**.

• In the Cluster Profile Manager, click **Discover Clusters**.

This opens the Discover Clusters dialog box, where you select the location of your clusters. As clusters are discovered, they populate a list for your selection:

![Discover Clusters dialog box](image)

If you already have a profile for any of the listed clusters, those profile names are included in the list. If you want to create a new profile for one of the discovered clusters, select the name of the cluster you want to use, and click **Next**. The subsequent dialog box lets you choose if you want to make your new profile the default.

Requirements for Cluster Discovery

Cluster discovery is supported only for MATLAB job schedulers (MJS), Microsoft Windows HPC Server, and Amazon EC2 cloud clusters. The following requirements apply to these clusters.

• **MJS** — Discover clusters functionality uses the multicast networking protocol to search for head nodes. MATLAB job schedulers (MJS) require that multicast networking protocol is enabled and working on the network that connects the MJS head nodes (where the schedulers are running) and the client machines.
• HPC Server — Discover clusters functionality uses Active Directory Domain Services to discover head nodes. HPC Server head nodes are added to the Active Directory during installation of the HPC Server software.

• Amazon EC2 — Discover clusters functionality requires a working network connection between the client and the Cloud Center web services running in mathworks.com.

Import and Export Cluster Profiles

Cluster profiles are stored as part of your MATLAB preferences, so they are generally available on an individual user basis. To make a cluster profile available to someone else, you can export it to a separate *settings* file. In this way, a repository of profiles can be created so that all users of a computing cluster can share common profiles.

To export a cluster profile:

1. In the Profile Clusters Manager, select (highlight) the profile you want to export.

2. Click **Export > Export**. (Alternatively, you can right-click the profile in the listing and select **Export**.)

 If you want to export all your profiles to a single file, click **Export > Export All**

3. In the Export profiles to file dialog box, specify a location and name for the file. The default file name is the same as the name of the profile it contains, with a *settings* extension appended; you can alter the names if you want to.
Profiles saved in this way can then be imported by other MATLAB users:

1 In the Cluster Profile Manager, click **Import**.

2 In the Import profiles from file dialog box, browse to find the `.settings` file for the profile you want to import. Select the file and click **Open**.

The imported profile appears in your Cluster Profile Manager list. Note that the list contains the profile name, which is not necessarily the file name. If you already have a profile with the same name as the one you are importing, the imported profile gets an extension added to its name so you can distinguish it.

You can also export and import profiles programmatically with the `parallel.exportProfile` and `parallel.importProfile` functions.

Export Profiles for MATLAB Compiler

You can use an exported profile with MATLAB Compiler to identify cluster setup information for running compiled applications on a cluster. For example, the `setmcruserdata` function can use the exported profile file name to set the value for the key `ParallelProfile`. For more information and examples of deploying parallel applications, see “Deploy Applications Created Using Parallel Computing Toolbox” in the MATLAB Compiler documentation.

A compiled application has the same default profile and the same list of alternative profiles that the compiling user had when the application was compiled. This means that in many cases the profile file is not needed, as might be the case when using the `local` profile for local workers. If an exported file is used, the first profile in the file becomes the default when imported. If any of the imported profiles have the same name as any of the existing profiles, they are renamed during import (though their names in the file remain unchanged).
Create and Modify Cluster Profiles

The first time you open the Cluster Profile Manager, it lists only one profile called local, which is the initial default profile having only default settings at this time.

The following example provides instructions on how to create and modify profiles using the Cluster Profile Manager.

Suppose you want to create a profile to set several properties for jobs to run in an MJS cluster. The following example illustrates a possible workflow, where you create two profiles differentiated only by the number of workers they use.
1 In the Cluster Profile Manager, select **Add > Custom > MATLAB Job Scheduler (MJS)**. This specifies that you want a new profile for an MJS cluster.

This creates and displays a new profile, called MJSProfile1.

2 Double-click the new profile name in the listing, and modify the profile name to be **MyMJSprofile1**.

3 Click **Edit** in the tool strip so that you can set your profile property values.

In the Description field, enter the text **MJS with 4 workers**, as shown in the following figure. Enter the host name for the machine on which the MJS is running, and the name of the MJS. If you are entering information for an actual MJS already running on your network, enter the appropriate text. If you are unsure about the MJS (formerly known as a job manager) names and locations on your network, ask your system administrator for help.
4 Scroll down to the Workers section, and for the Range of number of workers, enter the two-element vector \([4 \ 4]\). This specifies that jobs using this profile require at least four workers and no more than four workers. Therefore, a job using this profile runs on exactly four workers, even if it has to wait until four workers are available before starting.

You might want to edit other properties depending on your particular network and cluster situation.

5 Click **Done** to save the profile settings.

To create a similar profile with just a few differences, you can duplicate an existing profile and modify only the parts you need to change, as follows:

1 In the Cluster Profile Manager, right-click the profile name **MyMJSprofile1** in the list and select **Duplicate**.
This creates a duplicate profile with a name based on the original profile name appended with _Copy.

2 Double-click the new profile name and edit its name to be MyMJSprofile2.

3 Click **Edit** to allow you to change the profile property values.

4 Edit the description field to change its text to **MJS with any workers**.

5 Scroll down to the Workers section, and for the Range of number of workers, clear the [4 4] and leave the field blank, as highlighted in the following figure:

6 Click **Done** to save the profile settings and to close the properties editor.

You now have two profiles that differ only in the number of workers required for running a job.
When creating a job, you can apply either profile to that job as a way of specifying how many workers it should run on.

You can see examples of profiles for different kinds of supported schedulers in the MATLAB Distributed Computing Server installation instructions at “Configure Your Cluster”.

Validate Cluster Profiles

The Cluster Profile Manager includes the ability to validate profiles. Validation assures that the MATLAB client session can access the cluster, and that the cluster can run the various types of jobs with the settings of your profile.

To validate a profile, follow these steps:

1. Open the Cluster Profile Manager on the Home tab in the Environment section, by clicking Parallel > Manage Cluster Profiles.

2. In the Cluster Profile Manager, click the name of the profile you want to test. You can highlight a profile without changing the selected default profile. So a profile selected for validation does not need to be your default profile.

3. Click Validate.
Profile validation includes five stages:

1. Connects to the cluster (parcluster)
2. Runs an independent job (createJob) on the cluster using the profile
3. Runs an SPMD-type communicating job on the cluster using the profile
4. Runs a pool-type communicating job on the cluster using the profile
5. Runs a parallel pool job on the cluster using the profile

While the tests are running, the Cluster Profile Manager displays their progress as shown here:

![Cluster Profile Manager](image)

Note Validation will fail if you already have a parallel pool open.

When the tests are complete, you can click **Show Details** to get more information about test results. This information includes any error messages, debug logs, and other data that might be useful in diagnosing problems or helping to determine proper network settings.

The Validation Results tab keeps the test results available until the current MATLAB session closes.
Apply Cluster Profiles in Client Code
In the MATLAB client where you create and define your parallel computing cluster, job, and task objects, you can use cluster profiles when creating these objects.

Select a Default Cluster Profile
Some functions support default profiles, so that if you do not specify a profile for them, they automatically apply the default. There are several ways to specify which of your profiles should be used as the default profile:

- On the Home tab in the Environment section, click Parallel > Set Default, and from there, all your profiles are available. The current default profile is indicated. You can select any profile in the list as the default.
- The Cluster Profile Manager indicates which is currently the default profile. You can select any profile in the list, then click Set as Default.
- You can get or set the default profile programmatically by using the \texttt{parallel.defaultClusterProfile} function. The following sets of commands achieve the same thing:
 \begin{verbatim}
 parallel.defaultClusterProfile('MyMJSprofile1')
 parpool
 \end{verbatim}
 or
 \begin{verbatim}
 parpool('MyMJSprofile1')
 \end{verbatim}

Create Cluster Object
The \texttt{parcluster} function creates a cluster object in your workspace according to the specified profile. The profile identifies a particular cluster and applies property values. For example,

\begin{verbatim}
 c = parcluster('myMJSprofile')
\end{verbatim}

This command finds the cluster defined by the settings of the profile named \texttt{myMJSprofile} and sets property values on the cluster object based on settings in the profile. By applying different profiles, you can alter your cluster choices without changing your MATLAB application code.
Create Jobs and Tasks
Because the properties of cluster, job, and task objects can be defined in a profile, you do not have to explicitly define them in your application. Therefore, your code can accommodate any type of cluster without being modified. For example, the following code uses one profile to set properties on cluster, job, and task objects:

c = parcluster('myProfile1);
job1 = createJob(c); % Uses profile of cluster object c.
createTask(job1,@rand,1,{3}) % Uses profile of cluster object c.
Job Monitor

In this section...

“Job Monitor GUI” on page 6-26
“Manage Jobs Using the Job Monitor” on page 6-27
“Identify Task Errors Using the Job Monitor” on page 6-27

Job Monitor GUI

The Job Monitor displays the jobs in the queue for the scheduler determined by your selection of a cluster profile. Open the Job Monitor from the MATLAB desktop on the Home tab in the Environment section, by clicking Parallel > Monitor Jobs.

The job monitor lists all the jobs that exist for the cluster specified in the selected profile. You can choose any one of your profiles (those available in your current session Cluster Profile Manager), and whether to display jobs from all users or only your own jobs.
Typical Use Cases
The Job Monitor lets you accomplish many different goals pertaining to job tracking and queue management. Using the Job Monitor, you can:

- Discover and monitor all jobs submitted by a particular user
- Determine the status of a job
- Determine the cause of errors in a job
- Delete old jobs you no longer need
- Create a job object in MATLAB for access to a particular job in the queue

Manage Jobs Using the Job Monitor
Using the Job Monitor you can manage the listed jobs for your cluster. Right-click on any job in the list, and select any of the following options from the context menu. The available options depend on the type of job.

- **Cancel** — Stops a running job and changes its state to 'finished'. If the job is pending or queued, the state changes to 'finished' without its ever running. This is the same as the command-line `cancel` function for the job.
- **Delete** — Deletes the job data and removes the job from the queue. This is the same as the command-line `delete` function for the job. Also closes and deletes an interactive pool job.
- **Show details** — This displays detailed information about the job in the Command Window.
- **Show errors** — This displays all the tasks that generated an error in that job, with their error properties.
- **Fetch outputs** — This collects all the task output arguments from the job into the client workspace.

Identify Task Errors Using the Job Monitor
Because the Job Monitor indicates if a job had a run-time error, you can use it to identify the tasks that generated the errors in that job. For example, the following script generates an error because it attempts to perform a matrix inverse on a vector:

```
A = [2 4 6 8];
```
B = inv(A);

If you save this script in a file named invert_me.m, you can try to run the script as a batch job on the default cluster:

batch('invert_me')

When updated after the job runs, the Job Monitor includes the job created by the batch command, with an error icon (⚠️) for this job. Right-click the job in the list, and select Show Errors. For all the tasks with an error in that job, the task information, including properties related to the error, display in the MATLAB command window:

Task ID 1 from Job ID 2 Information
===================================

State : finished
Function : @parallel.internal.cluster.executeScript
Running Duration : 0 days 0h 0m 1s

- Task Result Properties

 ErrorIdentifier : MATLAB:square
 ErrorMessage : Matrix must be square.
 Error Stack : invert_me (line 2)
Programming Tips

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Program Development Guidelines” on page 6-29</td>
</tr>
<tr>
<td>“Current Working Directory of a MATLAB Worker” on page 6-30</td>
</tr>
<tr>
<td>“Writing to Files from Workers” on page 6-31</td>
</tr>
<tr>
<td>“Saving or Sending Objects” on page 6-31</td>
</tr>
<tr>
<td>“Using clear functions” on page 6-32</td>
</tr>
<tr>
<td>“Running Tasks That Call Simulink Software” on page 6-32</td>
</tr>
<tr>
<td>“Using the pause Function” on page 6-32</td>
</tr>
<tr>
<td>“Transmitting Large Amounts of Data” on page 6-32</td>
</tr>
<tr>
<td>“Interrupting a Job” on page 6-33</td>
</tr>
<tr>
<td>“Speeding Up a Job” on page 6-33</td>
</tr>
</tbody>
</table>

Program Development Guidelines

When writing code for Parallel Computing Toolbox software, you should advance one step at a time in the complexity of your application. Verifying your program at each step prevents your having to debug several potential problems simultaneously. If you run into any problems at any step along the way, back up to the previous step and reverify your code.

The recommended programming practice for distributed or parallel computing applications is

1 Run code normally on your local machine. First verify all your functions so that as you progress, you are not trying to debug the functions and the distribution at the same time. Run your functions in a single instance of MATLAB software on your local computer. For programming suggestions, see “Techniques for Improving Performance” in the MATLAB documentation.

2 Decide whether you need an independent or communicating job. If your application involves large data sets on which you need simultaneous calculations performed, you might benefit from a communicating job.
with distributed arrays. If your application involves looped or repetitive calculations that can be performed independently of each other, an independent job might be appropriate.

3 **Modify your code for division.** Decide how you want your code divided. For an independent job, determine how best to divide it into tasks; for example, each iteration of a for-loop might define one task. For a communicating job, determine how best to take advantage of parallel processing; for example, a large array can be distributed across all your workers.

4 **Use pmode to develop parallel functionality.** Use pmode with the local scheduler to develop your functions on several workers in parallel. As you progress and use pmode on the remote cluster, that might be all you need to complete your work.

5 **Run the independent or communicating job with a local scheduler.** Create an independent or communicating job, and run the job using the local scheduler with several local workers. This verifies that your code is correctly set up for batch execution, and in the case of an independent job, that its computations are properly divided into tasks.

6 **Run the independent job on only one cluster node.** Run your independent job with one task to verify that remote distribution is working between your client and the cluster, and to verify proper transfer of additional files and paths.

7 **Run the independent or communicating job on multiple cluster nodes.** Scale up your job to include as many tasks as you need for an independent job, or as many workers as you need for a communicating job.

Note The client session of MATLAB must be running the Java® Virtual Machine (JVM™) to use Parallel Computing Toolbox software. Do not start MATLAB with the `-nojvm` flag.

Current Working Directory of a MATLAB Worker

The current directory of a MATLAB worker at the beginning of its session is
CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work

where CHECKPOINTBASE is defined in the mdce_def file, HOSTNAME is the name of the node on which the worker is running, and WORKERNAME is the name of the MATLAB worker session.

For example, if the worker named worker22 is running on host nodeA52, and its CHECKPOINTBASE value is C:\TEMP\MDCE\Checkpoint, the starting current directory for that worker session is

C:\TEMP\MDCE\Checkpoint\nodeA52_worker22_mlworker_log\work

Writing to Files from Workers

When multiple workers attempt to write to the same file, you might end up with a race condition, clash, or one worker might overwrite the data from another worker. This might be likely to occur when:

- There is more than one worker per machine, and they attempt to write to the same file.
- The workers have a shared file system, and use the same path to identify a file for writing.

In some cases an error can result, but sometimes the overwriting can occur without error. To avoid an issue, be sure that each worker or parfor iteration has unique access to any files it writes or saves data to. There is no problem when multiple workers read from the same file.

Saving or Sending Objects

Do not use the `save` or `load` function on Parallel Computing Toolbox objects. Some of the information that these objects require is stored in the MATLAB session persistent memory and would not be saved to a file.

Similarly, you cannot send a parallel computing object between parallel computing processes by means of an object’s properties. For example, you cannot pass an MJS, job, task, or worker object to MATLAB workers as part of a job’s `JobData` property.
Also, system objects (e.g., Java classes, .NET classes, shared libraries, etc.) that are loaded, imported, or added to the Java search path in the MATLAB client, are not available on the workers unless explicitly loaded, imported, or added on the workers, respectively. Other than in the task function code, typical ways of loading these objects might be in \texttt{taskStartup}, \texttt{jobStartup}, and in the case of workers in a parallel pool, in \texttt{poolStartup} and using \texttt{pctRunOnAll}.

Using clear functions

Executing

\begin{verbatim}
clear functions
\end{verbatim}

clears all Parallel Computing Toolbox objects from the current MATLAB session. They still remain in the MJS. For information on recreating these objects in the client session, see “Recover Objects” on page 7-15.

Running Tasks That Call Simulink Software

The first task that runs on a worker session that uses Simulink software can take a long time to run, as Simulink is not automatically started at the beginning of the worker session. Instead, Simulink starts up when first called. Subsequent tasks on that worker session will run faster, unless the worker is restarted between tasks.

Using the pause Function

On worker sessions running on Macintosh or UNIX operating systems, \texttt{pause(inf)} returns immediately, rather than pausing. This is to prevent a worker session from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data

Operations that involve transmitting many objects or large amounts of data over the network can take a long time. For example, getting a job’s \texttt{Tasks} property or the results from all of a job’s tasks can take a long time if the job contains many tasks. See also “Object Data Size Limitations” on page 6-52.
Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use Ctrl+C (^C) in the client session to interrupt them. To control or interrupt the execution of jobs and tasks, use such functions as cancel, delete, demote, promote, pause, and resume.

Speeding Up a Job
You might find that your code runs slower on multiple workers than it does on one desktop computer. This can occur when task startup and stop time is significant relative to the task run time. The most common mistake in this regard is to make the tasks too small, i.e., too fine-grained. Another common mistake is to send large amounts of input or output data with each task. In both of these cases, the time it takes to transfer data and initialize a task is far greater than the actual time it takes for the worker to evaluate the task function.
Control Random Number Streams

In this section...

“Different Workers” on page 6-34
“Client and Workers” on page 6-35
“Client and GPU” on page 6-36
“Worker CPU and Worker GPU” on page 6-38

Different Workers
By default, each worker in a cluster working on the same job has a unique random number stream. This example uses two workers in a parallel pool to show they generate unique random number sequences.

```matlab
p = parpool(2);
spmd
    R = rand(1,4); % Different on each worker
end
R{1},R{2}
```

```plaintext
0.3246 0.6618 0.6349 0.6497
0.2646 0.0968 0.5052 0.4866
```

delete(p)

If you need all workers to generate the same sequence of numbers, you can seed their generators all the same.

```matlab
p = parpool(2);
spmd
    s = RandStream('twister'); % Default seed 0.
    RandStream.setGlobalStream(s);
    R = rand(1,4); % Same on all workers
end
R{1},R{2}
```

```plaintext
0.8147 0.9058 0.1270 0.9134
```
Control Random Number Streams

0.8147 0.9058 0.1270 0.9134

delete(p)

Note Because `rng('shuffle')` seeds the random number generator based on the current time, you should not use this command to set the random number stream on different workers if you want to assure independent streams. This is especially true when the command is sent to multiple workers simultaneously, such as inside a `parfor`, `spmd`, or a communicating job. For independent streams on the workers, use the default behavior; or if that is not sufficient for your needs, consider using a unique substream on each worker.

Client and Workers

By default, the MATLAB client and MATLAB workers use different random number generators, even if the workers are part of a local cluster on the same machine with the client. For the client, the default is the Mersenne Twister generator ('twister'), and for the workers the default is the Combined Multiple Recursive generator ('CombRecursive' or 'mrg32k3a'). If it is necessary to generate the same stream of numbers in the client and workers, you can set one to match the other.

For example, you might run a script as a batch job on a worker, and need the same generator or sequence as the client. Suppose you start with a script file named `randScript1.m` that contains the line:

```matlab
R = rand(1,4);
```

You can run this script in the client, and then as a batch job on a worker. Notice that the default generated random number sequences in the results are different.

```matlab
randScript1; % In client
R
```

```
R =
 0.8147   0.9058   0.1270   0.9134
```
parallel.defaultClusterProfile('local')
c = parcluster();
j = batch(c,'randScript1'); % On worker
wait(j);load(j);
R

R =
 0.3246 0.6618 0.6349 0.6497

For identical results, you can set the client and worker to use the same
generator and seed. Here the file randScript2.m contains the following code:

s = RandStream('CombRecursive','Seed',1);
RandStream.setGlobalStream(s);
R = rand(1,4);

Now, run the new script in the client and on a worker:

randScript2; % In client
R

R =
 0.4957 0.2243 0.2073 0.6823

j = batch(c,'randScript2'); % On worker
wait(j); load(j);
R

R =
 0.4957 0.2243 0.2073 0.6823

Client and GPU

By default MATLAB clients use different random generators than code running on a GPU. GPUs are more like workers in this regard, and use the Combined Multiple Recursive generator ('CombRecursive' or 'mrg32k3a') unless otherwise specified.

This example shows a default generation of random numbers comparing CPU and GPU in a fresh session.
Control Random Number Streams

\[\text{Rc} = \text{rand}(1,4) \]

\[
\begin{array}{cccc}
0.8147 & 0.9058 & 0.1270 & 0.9134 \\
\end{array}
\]

\[\text{Rg} = \text{gpuArray.rand}(1,4) \]

\[
\begin{array}{cccc}
0.7270 & 0.4522 & 0.9387 & 0.2360 \\
\end{array}
\]

Be aware that the GPU supports only three generators ('CombRecursive', 'Philox4x32-10', and 'Threefry4x64-20'). The following table lists the algorithms for these generators and their properties.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Generator</th>
<th>Multiple Stream and Substream Support</th>
<th>Approximate Period In Full Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>'CombRecursive' or 'mrg32k3a'</td>
<td>Combined multiple recursive generator</td>
<td>Yes</td>
<td>(2^{127})</td>
</tr>
<tr>
<td>'Philox4x32-10'</td>
<td>Philox 4x32 generator with 10 rounds</td>
<td>Yes</td>
<td>(2^{129})</td>
</tr>
<tr>
<td>'Threefry4x64-20'</td>
<td>Threefry 4x64 generator with 20 rounds</td>
<td>Yes</td>
<td>(2^{258})</td>
</tr>
</tbody>
</table>

None of these is the default client generator for the CPU. To generate the same sequence on CPU and GPU, you must use the only generator supported by both: 'CombRecursive'.

\[
\text{sc} = \text{RandStream('CombRecursive','Seed',1)}; \\
\text{RandStream.setGlobalStream(sc);} \\
\text{Rc} = \text{rand}(1,4) \\
\]

\[
\begin{array}{cccc}
0.4957 & 0.2243 & 0.2073 & 0.6823 \\
\end{array}
\]

\[
\text{sg} = \text{parallel.gpu.RandStream('CombRecursive','Seed',1);} \\
\text{parallel.gpu.RandStream.setGlobalStream(sg);} \\
\text{Rg} = \text{gpuArray.rand}(1,4) \\
\]
For normally distributed random numbers created by `randn`, CPU code by default uses a random stream with a `NormalTransform` setting of Ziggurat, while GPU code uses a setting of `Inversion`. You can set CPU and GPU generators the same to get the same `randn` sequence. The GPU supports only `Inversion`, so set the CPU to match:

```matlab
sc = RandStream('CombRecursive','NormalTransform','Inversion','Seed',1);
RandStream.setGlobalStream(sc)

sg = parallel.gpu.RandStream('CombRecursive','NormalTransform','Inversion','Seed',1);
parallel.gpu.RandStream.setGlobalStream(sg);

Rc = randn(1,4)
Rc =
  -0.0108  -0.7577  -0.8159   0.4742

Rg = gpuArray.randn(1,4)
Rg =
  -0.0108  -0.7577  -0.8159   0.4742

**Worker CPU and Worker GPU**

Code running on a worker’s CPU uses the same generator to create random numbers as code running on a worker’s GPU, but they do not share the same stream. You can use a common seed to generate the same sequence of numbers, as shown in this example, where each worker creates the same sequence on GPU and CPU, but different from the sequence on the other worker.

```matlab
p = parpool(2);
spmdd
 sc = RandStream('CombRecursive','Seed',labindex);
 RandStream.setGlobalStream(sc);
 Rc = rand(1,4)
```
Control Random Number Streams

```matlab
sg = parallel.gpu.RandStream('CombRecursive','Seed',labindex);
parallel.gpu.RandStream.setGlobalStream(sg);
Rg = gpuArray.rand(1,4)
end
delete(p)
```

For normally distributed random numbers from `randn`, by default a worker CPU uses a `NormalTransform` setting of `Ziggurat` while a worker GPU uses a setting of `Inversion`. You can set them both to use `Inversion` if you need the same sequence from CPU and GPU.
Profiling Parallel Code

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Introduction” on page 6-40</td>
</tr>
<tr>
<td>“Collecting Parallel Profile Data” on page 6-40</td>
</tr>
<tr>
<td>“Viewing Parallel Profile Data” on page 6-41</td>
</tr>
</tbody>
</table>

Introduction
The parallel profiler provides an extension of the profile command and the profile viewer specifically for communicating jobs, to enable you to see how much time each worker spends evaluating each function and how much time communicating or waiting for communications with the other workers. Before using the parallel profiler, familiarize yourself with the standard profiler and its views, as described in “Profiling for Improving Performance”.

Note The parallel profiler works on communicating jobs, including inside pmode. It does not work on parfor-loops.

Collecting Parallel Profile Data
For parallel profiling, you use the mpiprofile command within your communicating job (often within pmode) in a similar way to how you use profile.

To turn on the parallel profiler to start collecting data, enter the following line in your communicating job task code file, or type at the pmode prompt in the Parallel Command Window:

mpiprofile on

Now the profiler is collecting information about the execution of code on each worker and the communications between the workers. Such information includes:

- Execution time of each function on each worker
- Execution time of each line of code in each function
- Amount of data transferred between each worker
- Amount of time each worker spends waiting for communications

With the parallel profiler on, you can proceed to execute your code while the profiler collects the data.

In the pmode Parallel Command Window, to find out if the profiler is on, type:

```
P>> mpiprofile status
```

For a complete list of options regarding profiler data details, clearing data, etc., see the `mpiprofile` reference page.

**Viewing Parallel Profile Data**

To open the parallel profile viewer from pmode, type in the Parallel Command Window:

```
P>> mpiprofile viewer
```

The remainder of this section is an example that illustrates some of the features of the parallel profile viewer. This example executes in a pmode session running on four local workers. Initiate pmode by typing in the MATLAB Command Window:

```
pmode start local 4
```

When the Parallel Command Window (pmode) starts, type the following code at the pmode prompt:

```
P>> R1 = rand(16, codistributor())
P>> R2 = rand(16, codistributor())
P>> mpiprofile on
P>> P = R1*R2
P>> mpiprofile off
P>> mpiprofile viewer
```
The last command opens the Profiler window, first showing the Parallel Profile Summary (or function summary report) for worker (lab) 1.

The function summary report displays the data for each function executed on a worker in sortable columns with the following headers:

<table>
<thead>
<tr>
<th>Column Header</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls</td>
<td>How many times the function was called on this worker</td>
</tr>
<tr>
<td>Total Time</td>
<td>The total amount of time this worker spent executing this function</td>
</tr>
<tr>
<td>Self Time</td>
<td>The time this worker spent inside this function, not within children or local functions</td>
</tr>
<tr>
<td>Total Comm Time</td>
<td>The total time this worker spent transferring data with other workers, including waiting time to receive data</td>
</tr>
<tr>
<td>Self Comm Waiting Time</td>
<td>The time this worker spent during this function waiting to receive data from other workers</td>
</tr>
<tr>
<td><strong>Column Header</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Total Interlab Data</td>
<td>The amount of data transferred to and from this worker for this function</td>
</tr>
<tr>
<td>Computation Time Ratio</td>
<td>The ratio of time spent in computation for this function vs. total time (which includes communication time) for this function</td>
</tr>
<tr>
<td>Total Time Plot</td>
<td>Bar graph showing relative size of Self Time, Self Comm Waiting Time, and Total Time for this function on this worker</td>
</tr>
</tbody>
</table>
Click the name of any function in the list for more details about the execution of that function. The function detail report for `codistributed.mtimes` includes this listing:

![Profiler window showing function detail report](image)

The code that is displayed in the report is taken from the client. If the code has changed on the client since the communicating job ran on the workers, or if the workers are running a different version of the functions, the display might not accurately reflect what actually executed.

You can display information for each worker, or use the comparison controls to display information for several workers simultaneously. Two buttons provide **Automatic Comparison Selection**, allowing you to compare the data from the workers that took the most versus the least amount of time to execute the code, or data from the workers that spent the most versus the least amount of time in performing interworker communication. **Manual Comparison Selection** allows you to compare data from specific workers or workers that meet certain criteria.
The following listing from the summary report shows the result of using the **Automatic Comparison Selection** of **Compare (max vs. min TotalTime)**. The comparison shows data from worker (lab) 3 compared to worker (lab) 1 because these are the workers that spend the most versus least amount of time executing the code.
The following figure shows a summary of all the functions executed during the profile collection time. The Manual Comparison Selection of max Time Aggregate means that data is considered from all the workers for all functions to determine which worker spent the maximum time on each function. Next to each function’s name is the worker that took the longest time to execute that function. The other columns list the data from that worker.
The next figure shows a summary report for the workers that spend the most versus least time for each function. A **Manual Comparison Selection** of **max Time Aggregate** against **min Time >0 Aggregate** generated this summary. Both aggregate settings indicate that the profiler should consider data from all workers for all functions, for both maximum and minimum. This report lists the data for `codistributed.mtimes` from workers 3 and 1, because they spent the maximum and minimum times on this function. Similarly, other functions are listed.
Click on a function name in the summary listing of a comparison to get a detailed comparison. The detailed comparison for `codistributed.mtimes` looks like this, displaying line-by-line data from both workers:
To see plots of communication data, select **Plot All PerLab Communication** in the **Show Figures** menu. The top portion of the plot view report plots how much data each worker receives from each other worker for all functions.
To see only a plot of interworker communication times, select **Plot CommTimePerLab** in the **Show Figures** menu.

Plots like those in the previous two figures can help you determine the best way to balance work among your workers, perhaps by altering the partition scheme of your codistributed arrays.
Benchmarker Performance

**HPC Challenge Benchmarks**

Several MATLAB files are available to illustrate HPC Challenge benchmark performance. You can find the files in the folder `matlabroot/toolbox/distcomp/examples/benchmark/hpcchallenge`. Each file is self-documented with explanatory comments. These files are not self-contained examples, but rather require that you know enough about your cluster to be able to provide the necessary information when using these files.
Troubleshooting and Debugging

In this section...

- “Object Data Size Limitations” on page 6-52
- “File Access and Permissions” on page 6-52
- “No Results or Failed Job” on page 6-54
- “Connection Problems Between the Client and MJS” on page 6-55
- “SFTP Error: Received Message Too Long” on page 6-56

Object Data Size Limitations

The size limit of data transfers among the parallel computing objects is limited by the Java Virtual Machine (JVM) memory allocation. This limit applies to single transfers of data between client and workers in any job using an MJS cluster, or in any parfor-loop. The approximate size limitation depends on your system architecture:

<table>
<thead>
<tr>
<th>System Architecture</th>
<th>Maximum Data Size Per Transfer (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit</td>
<td>2.0 GB</td>
</tr>
<tr>
<td>32-bit</td>
<td>600 MB</td>
</tr>
</tbody>
</table>

File Access and Permissions

Ensuring That Workers on Windows Operating Systems Can Access Files

By default, a worker on a Windows operating system is installed as a service running as LocalSystem, so it does not have access to mapped network drives. Often a network is configured to not allow services running as LocalSystem to access UNC or mapped network shares. In this case, you must run the mdce service under a different user with rights to log on as a service. See the section “Set the User” in the MATLAB Distributed Computing Server System Administrator’s Guide.
Task Function Is Unavailable
If a worker cannot find the task function, it returns the error message

Error using ==> feval
    Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function function_name. One solution is to make sure the location of the function’s file, function_name.m, is included in the job’s AdditionalPaths property. Another solution is to transfer the function file to the worker by adding function_name.m to the AttachedFiles property of the job.

Load and Save Errors
If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

- What is the worker’s current folder?
- Can the worker find the file or folder?
- What user is the worker running as?
- Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State
A job or task might get stuck in the queued state. To investigate the cause of this problem, look for the scheduler’s logs:

- Platform LSF schedulers might send emails with error messages.
- Windows HPC Server (including CCS), LSF®, PBS Pro, TORQUE, and mpiexec save output messages in a debug log. See the getDebugLog reference page.
• If using a generic scheduler, make sure the submit function redirects error messages to a log file.

Possible causes of the problem are:

• The MATLAB worker failed to start due to licensing errors, the executable is not on the default path on the worker machine, or is not installed in the location where the scheduler expected it to be.

• MATLAB could not read/write the job input/output files in the scheduler’s job storage location. The storage location might not be accessible to all the worker nodes, or the user that MATLAB runs as does not have permission to read/write the job files.

• If using a generic scheduler:
  - The environment variable `MDCE_DECODE_FUNCTION` was not defined before the MATLAB worker started.
  - The decode function was not on the worker’s path.

• If using mpiexec:
  - The passphrase to smpd was incorrect or missing.
  - The smpd daemon was not running on all the specified machines.

**No Results or Failed Job**

**Task Errors**

If your job returned no results (i.e., `fetchOutputs(job)` returns an empty cell array), it is probable that the job failed and some of its tasks have their `Error` properties set.

You can use the following code to identify tasks with error messages:

```matlab
ermsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));
```

This code displays the nonempty error messages of the tasks found in the job object `yourjob`.
Troubleshooting and Debugging

Debug Logs
If you are using a supported third-party scheduler, you can use the getDebugLog function to read the debug log from the scheduler for a particular job or task.

For example, find the failed job on your LSF scheduler, and read its debug log:

```matlab
c = parcluster('my_lsf_profile')
failedjob = findJob(c, 'State', 'failed');
message = getDebugLog(c, failedjob(1))
```

Connection Problems Between the Client and MJS
For testing connectivity between the client machine and the machines of your compute cluster, you can use Admin Center. For more information about Admin Center, including how to start it and how to test connectivity, see “Start Admin Center” and “Test Connectivity” in the MATLAB Distributed Computing Server documentation.

Detailed instructions for other methods of diagnosing connection problems between the client and MJS can be found in some of the Bug Reports listed on the MathWorks Web site.

The following sections can help you identify the general nature of some connection problems.

Client Cannot See the MJS
If you cannot locate your MJS with parcluster, the most likely reasons for this failure are:

- The MJS is currently not running.
- Firewalls do not allow traffic from the client to the MJS.
- The client and the MJS are not running the same version of the software.
- The client and the MJS cannot resolve each other’s short hostnames.

MJS Cannot See the Client
If a warning message says that the MJS cannot open a TCP connection to the client computer, the most likely reasons for this are
• Firewalls do not allow traffic from the MJS to the client.
• The MJS cannot resolve the short hostname of the client computer. Use pctconfig to change the hostname that the MJS will use for contacting the client.

**SFTP Error: Received Message Too Long**

The example code for generic schedulers with non-shared file systems contacts an sftp server to handle the file transfer to and from the cluster’s file system. This use of sftp is subject to all the normal sftp vulnerabilities. One problem that can occur results in an error message similar to this:

Caused by:

```
Error using ==> RemoteClusterAccess>RemoteClusterAccess.waitForChoreToFinishOrError at 780
The following errors occurred in the
 com.mathworks.toolbox.distcomp.clusteraccess.UploadFilesChore:
Could not send Job3.common.mat for job 3:
One of your shell's init files contains a command that is writing to stdout, interfering with sftp. Access help
com.mathworks.toolbox.distcomp.remote.spi.plugin.SftpExtraBytesFromShellException:
One of your shell's init files contains a command that is writing to stdout, interfering with sftp.
Find and wrap the command with a conditional test, such as

 if ($?TERM != 0) then
 if ($"TERM" !~ "dumb") then
 /your command/
 endif
 endif

: 4: Received message is too long: 1718579037
```

The telling symptom is the phrase "Received message is too long:" followed by a very large number.

The sftp server starts a shell, usually bash or tcsh, to set your standard read and write permissions appropriately before transferring files. The server initializes the shell in the standard way, calling files like .bashrc and .cshrc. This problem happens if your shell emits text to standard out when it starts.
That text is transferred back to the sftp client running inside MATLAB, and is interpreted as the size of the sftp server's response message.

To work around this error, locate the shell startup file code that is emitting the text, and either remove it or bracket it within if statements to see if the sftp server is starting the shell:

```bash
if ($?TERM != 0) then
 if ("$TERM" != "dumb") then
 /your command/
 endif
endif
```

You can test this outside of MATLAB with a standard UNIX or Windows sftp command-line client before trying again in MATLAB. If the problem is not fixed, the error message persists:

```
> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
Received message too long 1718579042
```

If the problem is fixed, you should see:

```
> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
```
Program Independent Jobs

- “Program Independent Jobs” on page 7-2
- “Program Independent Jobs on a Local Cluster” on page 7-3
- “Program Independent Jobs for a Supported Scheduler” on page 7-8
- “Share Code with the Workers” on page 7-17
- “Program Independent Jobs for a Generic Scheduler” on page 7-24
Program Independent Jobs

An Independent job is one whose tasks do not directly communicate with each other, that is, the tasks are independent of each other. The tasks do not need to run simultaneously, and a worker might run several tasks of the same job in succession. Typically, all tasks perform the same or similar functions on different data sets in an *embarrassingly parallel* configuration.

Some of the details of a job and its tasks might depend on the type of scheduler you are using:

- “Program Independent Jobs on a Local Cluster” on page 7-3
- “Program Independent Jobs for a Supported Scheduler” on page 7-8
- “Program Independent Jobs for a Generic Scheduler” on page 7-24
Program Independent Jobs on a Local Cluster

Create and Run Jobs with a Local Cluster
For jobs that require more control than the functionality offered by such high level constructs as `spmd` and `parfor`, you have to program all the steps for creating and running the job. Using the local cluster (or local scheduler) on your machine lets you create and test your jobs without using the resources of your network cluster. Distributing tasks to workers that are all running on your client machine might not offer any performance enhancement, so this feature is provided primarily for code development, testing, and debugging.

Note Workers running in a local cluster on a Microsoft Windows operating system can display Simulink graphics as well as the output from certain functions such as `uigetfile` and `uigetdir`. (With other platforms or schedulers, workers cannot display any graphical output.) This behavior is subject to removal in a future release.

This section details the steps of a typical programming session with Parallel Computing Toolbox software using a local cluster:

- “Create a Cluster Object” on page 7-4
- “Create a Job” on page 7-4
- “Create Tasks” on page 7-5
- “Submit a Job to the Cluster” on page 7-6
- “Fetch the Job’s Results” on page 7-6

Note that the objects that the client session uses to interact with the cluster are only references to data that is actually contained in the cluster’s job storage location, not in the client session. After jobs and tasks are created,
you can close your client session and restart it, and your job still resides in the storage location. You can find existing jobs using the `findJob` function or the `Jobs` property of the cluster object.

### Create a Cluster Object

You use the `parcluster` function to create an object in your local MATLAB session representing the local scheduler.

```matlab
parallel.defaultClusterProfile('local');
c = parcluster();
```

### Create a Job

You create a job with the `createJob` function. This statement creates a job in the cluster's job storage location, creates the job object `job1` in the client session, and if you omit the semicolon at the end of the command, displays some information about the job.

```matlab
job1 = createJob(c)
```

**Job**

**Properties:**

- **ID:** 2
- **Type:** Independent
- **Username:** eng864
- **State:** pending
- **SubmitTime:**
- **StartTime:**
- **Running Duration:** 0 days 0h 0m 0s
- **AutoAttachFiles:** true
- **Auto Attached Files:** List files
  - **AttachedFiles:** {}
  - **AdditionalPaths:** {}

**Associated Tasks:**

- **Number Pending:** 0
Number Running: 0
Number Finished: 0
Task ID of Errors: []

Note that the job's State property is pending. This means the job has not yet been submitted (queued) for running, so you can now add tasks to it.

The scheduler's display now indicates the existence of your job, which is the pending one, as appears in this partial listing:

c

Local Cluster

Associated Jobs

| Number Pending: 1 | Number Queued: 0 | Number Running: 0 | NumberFinished: 0 |

Create Tasks

After you have created your job, you can create tasks for the job using the createTask function. Tasks define the functions to be evaluated by the workers during the running of the job. Often, the tasks of a job are all identical. In this example, five tasks will each generate a 3-by-3 matrix of random numbers.

createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

job1.Tasks

<table>
<thead>
<tr>
<th>ID</th>
<th>State</th>
<th>FinishTime</th>
<th>Function</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>pending</td>
<td></td>
<td>@rand</td>
<td></td>
</tr>
</tbody>
</table>
Submit a Job to the Cluster
To run your job and have its tasks evaluated, you submit the job to the cluster with the `submit` function.

```
submit(job1)
```

The local scheduler starts as many as twelve workers on your machine, and distributes the tasks of `job1` to these workers for evaluation.

Fetch the Job’s Results
The results of each task’s evaluation are stored in the task object’s `OutputArguments` property as a cell array. After waiting for the job to complete, use the function `fetchOutputs` to retrieve the results from all the tasks in the job.

```
wait(job1)
results = fetchOutputs(job1);
```

Display the results from each task.

```
results{1:5}
```

```
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169
0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987
0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186
0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
```
After the job is complete, you can repeat the commands to examine the updated status of the cluster, job, and task objects:

c
task1
job1.Tasks

**Local Cluster Behavior**

The local scheduler runs in the MATLAB client session, so you do not have to start any separate scheduler or MJS process for the local scheduler. When you submit a job for evaluation to the local cluster, the scheduler starts a MATLAB worker for each task in the job, but only up to as many workers as allowed by the local profile. If your job has more tasks than allowed workers, the scheduler waits for one of the current tasks to complete before starting another MATLAB worker to evaluate the next task. You can modify the number of allowed workers in the local scheduler profile, up to a maximum of twelve. If not specified, the default is to run only as many workers as computational cores on the machine.

The local cluster has no interaction with any other scheduler or MJS, nor with any other workers that might also be running on your client machine under the mde service. Multiple MATLAB sessions on your computer can each start its own local scheduler with its own twelve workers, but these groups do not interact with each other, so you cannot combine local groups of workers to increase your local cluster size.

When you end your MATLAB client session, its local scheduler and any workers that happen to be running at that time also stop immediately.
Program Independent Jobs for a Supported Scheduler

In this section...

“Create and Run Jobs” on page 7-8
“Manage Objects in the Scheduler” on page 7-14

Create and Run Jobs

This section details the steps of a typical programming session with Parallel Computing Toolbox software using a supported job scheduler on a cluster. Supported schedulers include the MATLAB job scheduler (MJS), Platform LSF (Load Sharing Facility), Microsoft Windows HPC Server (including CCS), PBS Pro, or a TORQUE scheduler.

This section assumes you have an MJS, LSF, PBS Pro, TORQUE, or Windows HPC Server (including CCS and HPC Server 2008) scheduler installed and running on your network. For more information about LSF, see http://www.platform.com/Products/. For more information about Windows HPC Server, see http://www.microsoft.com/hpc. With all of these cluster types, the basic job programming sequence is the same:

- “Define and Select a Profile” on page 7-9
- “Find a Cluster” on page 7-9
- “Create a Job” on page 7-10
- “Create Tasks” on page 7-12
- “Submit a Job to the Job Queue” on page 7-12
- “Retrieve Job Results” on page 7-13

Note that the objects that the client session uses to interact with the MJS are only references to data that is actually contained in the MJS, not in the client session. After jobs and tasks are created, you can close your client session and restart it, and your job is still stored in the MJS. You can find existing jobs using the findJob function or the Jobs property of the MJS cluster object.
Define and Select a Profile
A cluster profile identifies the type of cluster to use and its specific properties. In a profile, you define how many workers a job can access, where the job data is stored, where MATLAB is accessed and many other cluster properties. The exact properties are determined by the type of cluster.

The step in this section all assume the profile with the name MyProfile identifies the cluster you want to use, with all necessary property settings. With the proper use of a profile, the rest of the programming is the same, regardless of cluster type. After you define or import your profile, you can set it as the default profile in the Profile Manager GUI, or with the command:

```
parallel.defaultClusterProfile('MyProfile')
```

A few notes regarding different cluster types and their properties:

Notes In a shared file system, all nodes require access to the folder specified in the cluster object’s JobStorageLocation property.

Because Windows HPC Server requires a shared file system, all nodes require access to the folder specified in the cluster object’s JobStorageLocation property.

In a shared file system, MATLAB clients on many computers can access the same job data on the network. Properties of a particular job or task should be set from only one client computer at a time.

When you use an LSF scheduler in a nonshared file system, the scheduler might report that a job is in the finished state even though the LSF scheduler might not yet have completed transferring the job’s files.

Find a Cluster
You use the `parcluster` function to identify a cluster and to create an object representing the cluster in your local MATLAB session.
To find a specific cluster, use the cluster profile to match the properties of the cluster you want to use. In this example, `MyProfile` is the name of the profile that defines the specific cluster.

```matlab
c = parcluster('MyProfile');
```

MJS Cluster

Properties

- Name: `my_mjs`
- Profile: `MyProfile`
- Modified: `false`
- Host: `node345`
- Username: `mylogin`

- NumWorkers: `1`
- NumBusyWorkers: `0`
- NumIdleWorkers: `1`

- JobStorageLocation: Database on node345
- ClusterMatlabRoot: `C:\apps\matlab`
- OperatingSystem: `windows`
- AllHostAddresses: `0:0:0:0`
- SecurityLevel: `0 (No security)`
- HasSecureCommunication: `false`

Associated Jobs

- Number Pending: `0`
- Number Queued: `0`
- Number Running: `0`
- Number Finished: `0`

Create a Job

You create a job with the `createJob` function. Although this command executes in the client session, it actually creates the job on the cluster, `c`, and creates a job object, `job1`, in the client session.

```matlab
job1 = createJob(c)
```
Program Independent Jobs for a Supported Scheduler

Job

Properties:
- ID: 1
- Type: Independent
- Username: mylogin
- State: pending
- SubmitTime: 
- StartTime: 
- Running Duration: 0 days 0h 0m 0s
- AutoAttachFiles: true
- Auto Attached Files: List files
  - AttachedFiles: {}
  - AdditionalPaths: {}

Associated Tasks:
- Number Pending: 0
- Number Running: 0
- Number Finished: 0
- Task ID of Errors: []

Note that the job’s State property is pending. This means the job has not been queued for running yet, so you can now add tasks to it.

The cluster’s display now includes one pending job, as shown in this partial listing:

c

Associated Jobs

- Number Pending: 1
- Number Queued: 0
- Number Running: 0
- Number Finished: 0

You can transfer files to the worker by using the AttachedFiles property of the job object. For details, see “Share Code with the Workers” on page 7-17.
Create Tasks

After you have created your job, you can create tasks for the job using the `createTask` function. Tasks define the functions to be evaluated by the workers during the running of the job. Often, the tasks of a job are all identical. In this example, each task will generate a 3-by-3 matrix of random numbers.

```matlab
createTask(job1, @rand, 1, {3,3});
```

The `Tasks` property of `job1` is now a 5-by-1 matrix of task objects.

```matlab
taskID = job1.Tasks;
```

Alternatively, you can create the five tasks with one call to `createTask` by providing a cell array of five cell arrays defining the input arguments to each task.

```matlab
T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});
```

In this case, `T` is a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the job queue with the `submit` function.

```matlab
submit(job1)
```

The job manager distributes the tasks of `job1` to its registered workers for evaluation.
Each worker performs the following steps for task evaluation:

1. Receive `AttachedFiles` and `AdditionalPaths` from the job. Place files and modify the path accordingly.

2. Run the `jobStartup` function the first time evaluating a task for this job. You can specify this function in `AttachedFiles` or `AdditionalPaths`. When using an MJS, if the same worker evaluates subsequent tasks for this job, `jobStartup` does not run between tasks.

3. Run the `taskStartup` function. You can specify this function in `AttachedFiles` or `AdditionalPaths`. This runs before every task evaluation that the worker performs, so it could occur multiple times on a worker for each job.

4. If the worker is part of forming a new parallel pool, run the `poolStartup` function. (This occurs when executing `parpool` or when running other types of jobs that form and use a parallel pool, such as `batch`).

5. Receive the task function and arguments for evaluation.

6. Evaluate the task function, placing the result in the task’s `OutputArguments` property. Any error information goes in the task’s `Error` property.

7. Run the `taskFinish` function.

**Retrieve Job Results**
The results of each task’s evaluation are stored in that task object’s `OutputArguments` property as a cell array. Use the function `fetchOutputs` to retrieve the results from all the tasks in the job.

```matlab
wait(job1) results = fetchOutputs(job1);
```

Display the results from each task.

```matlab
results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
```
Manage Objects in the Scheduler

Because all the data of jobs and tasks resides in the cluster job storage location, these objects continue to exist even if the client session that created them has ended. The following sections describe how to access these objects and how to permanently remove them:

- “What Happens When the Client Session Ends” on page 7-14
- “Recover Objects” on page 7-15
- “Reset Callback Properties (MJS Only)” on page 7-15
- “Remove Objects Permanently” on page 7-16

What Happens When the Client Session Ends

When you close the client session of Parallel Computing Toolbox software, all of the objects in the workspace are cleared. However, the objects in MATLAB Distributed Computing Server software or other cluster resources remain in place. When the client session ends, only the local reference objects are lost, not the actual job and task data in the cluster.
Therefore, if you have submitted your job to the cluster job queue for execution, you can quit your client session of MATLAB, and the job will be executed by the cluster. You can retrieve the job results later in another client session.

**Recover Objects**

A client session of Parallel Computing Toolbox software can access any of the objects in MATLAB Distributed Computing Server software, whether the current client session or another client session created these objects.

You create cluster objects in the client session by using the `parcluster` function.

```matlab
p = parcluster('MyProfile');
```

When you have access to the cluster by the object `p`, you can create objects that reference all those job contained in that cluster. The jobs are accessible in cluster object’s `Jobs` property, which is an array of job objects:

```matlab
all_jobs = p.Jobs
```

You can index through the array `all_jobs` to locate a specific job.

Alternatively, you can use the `findJob` function to search in a cluster for any jobs or a particular job identified by any of its properties, such as its `State`.

```matlab
all_jobs = findJob(p);
finished_jobs = findJob(p,'State','finished')
```

This command returns an array of job objects that reference all finished jobs on the cluster `p`.

**Reset Callback Properties (MJS Only)**

When restarting a client session, you lose the settings of any callback properties (for example, the `FinishedFcn` property) on jobs or tasks. These properties are commonly used to get notifications in the client session of state changes in their objects. When you create objects in a new client session that reference existing jobs or tasks, you must reset these callback properties if you intend to use them.
Remove Objects Permanently

Jobs in the cluster continue to exist even after they are finished, and after the MJS is stopped and restarted. The ways to permanently remove jobs from the cluster are explained in the following sections:

- “Delete Selected Objects” on page 7-16
- “Start an MJS from a Clean State” on page 7-16

Delete Selected Objects. From the command line in the MATLAB client session, you can call the `delete` function for any job or task object. If you delete a job, you also remove all tasks contained in that job.

For example, find and delete all finished jobs in your cluster that belong to the user joep.

```matlab
c = parcluster('MyProfile')
finished_jobs = findJob(c,'State','finished','Username','joep')
delete(finished_jobs)
clear finished_jobs
```

The `delete` function permanently removes these jobs from the cluster. The `clear` function removes the object references from the local MATLAB workspace.

Start an MJS from a Clean State. When an MJS starts, by default it starts so that it resumes its former session with all jobs intact. Alternatively, an MJS can start from a clean state with all its former history deleted. Starting from a clean state permanently removes all job and task data from the MJS of the specified name on a particular host.

As a network administration feature, the `-clean` flag of the `startjobmanager` script is described in “Start in a Clean State” in the MATLAB Distributed Computing Server System Administrator’s Guide.
Share Code with the Workers

Because the tasks of a job are evaluated on different machines, each machine must have access to all the files needed to evaluate its tasks. The basic mechanisms for sharing code are explained in the following sections:

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Workers Access Files Directly” on page 7-17</td>
</tr>
<tr>
<td>“Pass Data to and from Worker Sessions” on page 7-18</td>
</tr>
<tr>
<td>“Pass MATLAB Code for Startup and Finish” on page 7-22</td>
</tr>
</tbody>
</table>

Workers Access Files Directly

If the workers all have access to the same drives on the network, they can access the necessary files that reside on these shared resources. This is the preferred method for sharing data, as it minimizes network traffic.

You must define each worker session’s search path so that it looks for files in the right places. You can define the path:

- By using the job’s AdditionalPaths property. This is the preferred method for setting the path, because it is specific to the job.

AdditionalPaths identifies folders to be added to the top of the command search path of worker sessions for this job. If you also specify AttachedFiles, the AttachedFiles are above AdditionalPaths on the workers’ path.

When you specify AdditionalPaths at the time of creating a job, the settings are combined with those specified in the applicable cluster profile. Setting AdditionalPaths on a job object after it is created does not combine the new setting with the profile settings, but overwrites existing settings for that job.

AdditionalPaths is empty by default. For a mixed-platform environment, the strings can specify both UNIX and Microsoft Windows style paths; those setting that are not appropriate or not found for a particular machine generate warnings and are ignored.
This example sets the MATLAB worker path in a mixed-platform environment to use functions in both the central repository /central/funcs and the department archive /dept1/funcs, which each also have a Windows UNC path.

```matlab
C = parcluster(); % Use default
job1 = createJob(c);
ap = {'/central/funcs','/dept1/funcs', ...
 '\OurDomain\central\funcs','\OurDomain\dept1\funcs'};
job1.AdditionalPaths = ap;
```

- By putting the path command in any of the appropriate startup files for the worker:
  - `matlabroot\toolbox\local\startup.m`
  - `matlabroot\toolbox\distcomp\user\jobStartup.m`
  - `matlabroot\toolbox\distcomp\user\taskStartup.m`

Access to these files can be passed to the worker by the job’s `AttachedFiles` or `AdditionalPaths` property. Otherwise, the version of each of these files that is used is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on the user name. You can set the user name with which the MJS and worker services of MATLAB Distributed Computing Server software run by setting the `MDCEUSER` value in the `mdce_def` file before starting the services. For Microsoft Windows operating systems, there is also `MDCEPASS` for providing the account password for the specified user. For an explanation of service default settings and the `mdce_def` file, see “Define Script Defaults” in the MATLAB Distributed Computing Server System Administrator’s Guide.

### Pass Data to and from Worker Sessions

A number of properties on task and job objects are designed for passing code or data from client to scheduler to worker, and back. This information could include MATLAB code necessary for task evaluation, or the input data for processing or output data resulting from task evaluation. The following properties facilitate this communication:
• **InputArguments** — This property of each task contains the input data you specified when creating the task. This data gets passed into the function when the worker performs its evaluation.

• **OutputArguments** — This property of each task contains the results of the function’s evaluation.

• **JobData** — This property of the job object contains data that gets sent to every worker that evaluates tasks for that job. This property works efficiently because the data is passed to a worker only once per job, saving time if that worker is evaluating more than one task for the job. (Note: Do not confuse this property with the **UserData** property on any objects in the MATLAB client. Information in **UserData** is available only in the client, and is not available to the scheduler or workers.)

• **AutoAttachFiles** — This property of the job object uses a boolean value to specify that you want MATLAB to perform an analysis on the task functions in the job to determine which code files are necessary for the workers, and to automatically send those files to the workers. You can set this property value in a cluster profile using the Profile Manager, or you can set it programmatically on a job object at the command line.

```matlab
c = parcluster();
j = createJob(c);
j.AutoAttachFiles = true;
```

The supported code file formats for automatic attachment are MATLAB files (.m extension), P-code files (.p), and MEX-files (.mex). Note that **AutoAttachFiles** does not include data files for your job; use the **AttachedFiles** property to explicitly transfer these files to the workers. Use **listAutoAttachedFiles** to get a listing of the code files that are automatically attached to a job.

If the **AutoAttachFiles** setting is **true** for the cluster profile used when starting a parallel pool, MATLAB performs an analysis on **spmd** blocks and **parfor**-loops to determine what code files are necessary for their execution, then automatically attaches those files to the parallel pool so that the code is available to the workers.

• **AttachedFiles** — This property of the job object is a cell array in which you manually specify all the folders and files that get sent to the workers.
On the worker, the files are installed and the entries specified in the property are added to the search path of the worker session.

`AttachedFiles` contains a list of folders and files that the worker need to access for evaluating a job’s tasks. The value of the property (empty by default) is defined in the cluster profile or in the client session. You set the value for the property as a cell array of strings. Each string is an absolute or relative pathname to a folder or file. (Note: If these files or folders change while they are being transferred, or if any of the folders are empty, a failure or error can result. If you specify a pathname that does not exist, an error is generated.)

The first time a worker evaluates a task for a particular job, the scheduler passes to the worker the files and folders in the `AttachedFiles` property. On the worker machine, a folder structure is created that is exactly the same as that accessed on the client machine where the property was set. Those entries listed in the property value are added to the top of the command search path in the worker session. (Subfolders of the entries are not added to the path, even though they are included in the folder structure. See the following examples.) To find out where the files are placed on the worker machine, use the function `getAttachedFilesFolder` in code that runs on the worker.

When the worker runs subsequent tasks for the same job, it uses the folder structure already set up by the job’s `AttachedFiles` property for the first task it ran for that job.

When you specify `AttachedFiles` at the time of creating a job, the settings are combined with those specified in the applicable profile. Setting `AttachedFiles` on a job object after it is created does not combine the new setting with the profile settings, but overwrites the existing settings for that job.

The transfer of `AttachedFiles` occurs for each worker running a task for that particular job on a machine, regardless of how many workers run on that machine. Normally, the attached files are deleted from the worker machine when the job is completed, or when the next job begins.

The following examples show how to programmatically set `AttachedFiles` for a job, and how to include subfolders in the workers’ command search paths.
This example makes available to a job’s workers the contents of the folders af1 and af2, and the file affile1.m.

```matlab
job1 = createJob(c) % c is cluster object
job1.AttachedFiles = {'af1' 'af2' 'affile1.m'};
job1.AttachedFiles

'af1'
'af2'
'affile1.m'
```

Suppose in your client MATLAB session you have the following folders on your MATLAB path:

```matlab
fdrA
fdrA\subfdr1
fdrA\subfdr2
fdrB
```

This code transfers the contents of these folders to the worker machines, and adds the top folders to the paths of the worker MATLAB sessions. On the client, execute the following code:

```matlab
j = createJob(c, 'AttachedFiles', {'fdrA', 'fdrB'})
% This includes the subfolders of fdrA, but they are not on the path.
```

In the task function that executes on the workers, include the following code:

```matlab
% First, find where AttachedFiles are installed:
AttachLoc = getAttachedFilesFolder;

% The top folders are already on the path, so add subfolders:
addpath(fullfile(AttachLoc,'fdrA','subfdr1'),...
 fullfile(AttachLoc,'fdrA','subfdr2'))
```
Note There is a default maximum amount of data that can be sent in a single call for setting properties. This limit applies to the OutputArguments property as well as to data passed into a job as input arguments or AttachedFiles. If the limit is exceeded, you get an error message. For more information about this data transfer size limit, see “Object Data Size Limitations” on page 6-52.

Pass MATLAB Code for Startup and Finish

As a session of MATLAB, a worker session executes its startup.m file each time it starts. You can place the startup.m file in any folder on the worker’s MATLAB search path, such as toolbox/distcomp/user.

These additional files can initialize and clean up a worker session as it begins or completes evaluations of tasks for a job:

- jobStartup.m automatically executes on a worker when the worker runs its first task of a job.
- taskStartup.m automatically executes on a worker each time the worker begins evaluation of a task.
- poolStartup.m automatically executes on a worker each time the worker is included in a newly started parallel pool.
- taskFinish.m automatically executes on a worker each time the worker completes evaluation of a task.

Empty versions of these files are provided in the folder:

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever MATLAB code you want the worker to execute at the indicated times.

Alternatively, you can create your own versions of these files and pass them to the job as part of the AttachedFiles property, or include the path names to their locations in the AdditionalPaths property.

The worker gives precedence to the versions provided in the AttachedFiles property, then to those pointed to in the AdditionalPaths property. If any
of these files is not included in these properties, the worker uses the version of the file in the toolbox/distcomp/user folder of the worker’s MATLAB installation.
Program Independent Jobs for a Generic Scheduler

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Overview” on page 7-24</td>
</tr>
<tr>
<td>“MATLAB Client Submit Function” on page 7-25</td>
</tr>
<tr>
<td>“Example — Write the Submit Function” on page 7-29</td>
</tr>
<tr>
<td>“MATLAB Worker Decode Function” on page 7-30</td>
</tr>
<tr>
<td>“Example — Write the Decode Function” on page 7-33</td>
</tr>
<tr>
<td>“Example — Program and Run a Job in the Client” on page 7-33</td>
</tr>
<tr>
<td>“Supplied Submit and Decode Functions” on page 7-37</td>
</tr>
<tr>
<td>“Manage Jobs with Generic Scheduler” on page 7-38</td>
</tr>
<tr>
<td>“Summary” on page 7-42</td>
</tr>
</tbody>
</table>

Overview

Parallel Computing Toolbox software provides a generic interface that lets you interact with third-party schedulers, or use your own scripts for distributing tasks to other nodes on the cluster for evaluation.

Because each job in your application is comprised of several tasks, the purpose of your scheduler is to allocate a cluster node for the evaluation of each task, or to distribute each task to a cluster node. The scheduler starts remote MATLAB worker sessions on the cluster nodes to evaluate individual tasks of the job. To evaluate its task, a MATLAB worker session needs access to certain information, such as where to find the job and task data. The generic scheduler interface provides a means of getting tasks from your Parallel Computing Toolbox client session to your scheduler and thereby to your cluster nodes.

To evaluate a task, a worker requires five parameters that you must pass from the client to the worker. The parameters can be passed any way you want to transfer them, but because a particular one must be an environment variable, the examples in this section pass all parameters as environment variables.
**MATLAB Client Submit Function**

When you submit a job to a cluster, the function identified by the cluster object’s `IndependentSubmitFcn` property executes in the MATLAB client session. You set the cluster’s `IndependentSubmitFcn` property to identify the submit function and any arguments you might want to send to it. For example, to use a submit function called `mysubmitfunc`, you set the property with the command

\[ c.IndependentSubmitFcn = @mysubmitfunc \]

where `c` is the cluster object in the client session, created with the `parcluster` function. In this case, the submit function gets called with its three default arguments: cluster, job, and properties object, in that order. The function declaration line of the function might look like this:

```
function mysubmitfunc(cluster, job, props)
```

Inside the function of this example, the three argument objects are known as cluster, job, and props.

You can write a submit function that accepts more than the three default arguments, and then pass those extra arguments by including them in the definition of the `IndependentSubmitFcn` property.
Program Independent Jobs

time_limit = 300
testlocation = 'Plant30'
c.IndependentSubmitFcn = {@mysubmitfunc, time_limit, testlocation}

In this example, the submit function requires five arguments: the three
defaults, along with the numeric value of time_limit and the string value of
testlocation. The function’s declaration line might look like this:

function mysubmitfunc(cluster, job, props, localtimeout, plant)

The following discussion focuses primarily on the minimum requirements
of the submit and decode functions.

This submit function has three main purposes:

- To identify the decode function that MATLAB workers run when they start
- To make information about job and task data locations available to the
  workers via their decode function
- To instruct your scheduler how to start a MATLAB worker on the cluster
  for each task of your job

Identify the Decode Function

The client’s submit function and the worker’s decode function work together as
a pair. Therefore, the submit function must identify its corresponding decode
function. The submit function does this by setting the environment variable
MDCE_DECODE_FUNCTION. The value of this variable is a string identifying the name of the decode function on the path of the MATLAB worker. Neither the decode function itself nor its name can be passed to the worker in a job or task property; the file must already exist before the worker starts. For more information on the decode function, see “MATLAB Worker Decode Function” on page 7-30. Standard decode functions for independent and communicating jobs are provided with the product. If your submit functions make use of the definitions in these decode functions, you do not have to provide your own decode functions. For example, to use the standard decode function for independent jobs, in your submit function set MDCE_DECODE_FUNCTION to 'parallel.cluster.generic.independentDecodeFcn'.

**Pass Job and Task Data**

The third input argument (after cluster and job) to the submit function is the object with the properties listed in the following table.

You do not set the values of any of these properties. They are automatically set by the toolbox so that you can program your submit function to forward them to the worker nodes.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StorageConstructor</td>
<td>String. Used internally to indicate that a file system is used to contain job and task data.</td>
</tr>
<tr>
<td>StorageLocation</td>
<td>String. Derived from the cluster JobStorageLocation property.</td>
</tr>
<tr>
<td>JobLocation</td>
<td>String. Indicates where this job's data is stored.</td>
</tr>
<tr>
<td>TaskLocations</td>
<td>Cell array. Indicates where each task's data is stored. Each element of this array is passed to a separate worker.</td>
</tr>
<tr>
<td>NumberOfTasks</td>
<td>Double. Indicates the number of tasks in the job. You do not need to pass this value to the worker, but you can use it within your submit function.</td>
</tr>
</tbody>
</table>
With these values passed into your submit function, the function can pass them to the worker nodes by any of several means. However, because the name of the decode function must be passed as an environment variable, the examples that follow pass all the other necessary property values also as environment variables.

The submit function writes the values of these object properties out to environment variables with the \texttt{setenv} function.

\textbf{Define Scheduler Command to Run MATLAB Workers}

The submit function must define the command necessary for your scheduler to start MATLAB workers. The actual command is specific to your scheduler and network configuration. The commands for some popular schedulers are listed in the following table. This table also indicates whether or not the scheduler automatically passes environment variables with its submission. If not, your command to the scheduler must accommodate these variables.

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>Scheduler Command</th>
<th>Passes Environment Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSF</td>
<td>bsub</td>
<td>Yes, by default.</td>
</tr>
<tr>
<td>PBS</td>
<td>qsub</td>
<td>Command must specify which variables to pass.</td>
</tr>
<tr>
<td>Sun™ Grid Engine</td>
<td>qsub</td>
<td>Command must specify which variables to pass.</td>
</tr>
</tbody>
</table>

Your submit function might also use some of these properties and others when constructing and invoking your scheduler command. \texttt{cluster}, \texttt{job}, and \texttt{props} (so named only for this example) refer to the first three arguments to the submit function.

<table>
<thead>
<tr>
<th>Argument Object</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>MatlabCommandToRun</td>
</tr>
<tr>
<td>cluster</td>
<td>ClusterMatlabRoot</td>
</tr>
</tbody>
</table>
**Example — Write the Submit Function**

The submit function in this example uses environment variables to pass the necessary information to the worker nodes. Each step below indicates the lines of code you add to your submit function.

1. Create the function declaration. There are three objects automatically passed into the submit function as its first three input arguments: the cluster object, the job object, and the props object.

   ```matlab
 function mysubmitfunc(cluster, job, props)
   ```

   This example function uses only the three default arguments. You can have additional arguments passed into your submit function, as discussed in “MATLAB Client Submit Function” on page 7-25.

2. Identify the values you want to send to your environment variables. For convenience, you define local variables for use in this function.

   ```matlab
 decodeFcn = 'mydecodefunc';
 jobLocation = get(props, 'JobLocation');
 taskLocations = get(props, 'TaskLocations'); % This is a cell array
 storageLocation = get(props, 'StorageLocation');
 storageConstructor = get(props, 'StorageConstructor');
   ```

   The name of the decode function that must be available on the MATLAB worker path is `mydecodefunc`.

3. Set the environment variables, other than the task locations. All the MATLAB workers use these values when evaluating tasks of the job.

   ```matlab
 setenv('MDCE_DECODE_FUNCTION', decodeFcn);
 setenv('MDCE_JOB_LOCATION', jobLocation);
 setenv('MDCE_STORAGE_LOCATION', storageLocation);
 setenv('MDCE_STORAGE_CONSTRUCTOR', storageConstructor);
   ```
Your submit function can use any names you choose for the environment variables, with the exception of `MDCE_DECODE_FUNCTION`; the MATLAB worker looks for its decode function identified by this variable. If you use alternative names for the other environment variables, be sure that the corresponding decode function also uses your alternative variable names. You can see the variable names used in the standard decode function by typing

```
edit parallel.cluster.generic.independentDecodeFcn
```

4 Set the task-specific variables and scheduler commands. This is where you instruct your scheduler to start MATLAB workers for each task.

```matlab
for i = 1:props.NumberOfTasks
 setenv('MDCE_TASK_LOCATION', taskLocations{i});
 constructSchedulerCommand;
end
```

The line `constructSchedulerCommand` represents the code you write to construct and execute your scheduler’s submit command. This command is typically a string that combines the scheduler command with necessary flags, arguments, and values derived from the values of your object properties. This command is inside the `for`-loop so that your scheduler gets a command to start a MATLAB worker on the cluster for each task.

**Note** If you are not familiar with your network scheduler, ask your system administrator for help.

**MATLAB Worker Decode Function**

The sole purpose of the MATLAB worker’s decode function is to read certain job and task information into the MATLAB worker session. This information could be stored in disk files on the network, or it could be available as environment variables on the worker node. Because the discussion of the submit function illustrated only the usage of environment variables, so does this discussion of the decode function.

When working with the decode function, you must be aware of the
- Name and location of the decode function itself
- Names of the environment variables this function must read

**Note** Standard decode functions are now included in the product. If your submit functions make use of the definitions in these decode functions, you do not have to provide your own decode functions. For example, to use the standard decode function for independent jobs, in your submit function set `MDCE_DECODE_FUNCTION` to `'parallel.cluster.generic.independentDecodeFcn'`. The remainder of this section is useful only if you use names and settings other than the standards used in the provided decode functions.

**Identify File Name and Location**

The client’s submit function and the worker’s decode function work together as a pair. For more information on the submit function, see “MATLAB Client Submit Function” on page 7-25. The decode function on the worker is identified by the submit function as the value of the environment variable `MDCE_DECODE_FUNCTION`. The environment variable must be copied from the client node to the worker node. Your scheduler might perform this task for you automatically; if it does not, you must arrange for this copying.

The value of the environment variable `MDCE_DECODE_FUNCTION` defines the filename of the decode function, but not its location. The file cannot be passed
as part of the job AdditionalPaths or AttachedFiles property, because the function runs in the MATLAB worker before that session has access to the job. Therefore, the file location must be available to the MATLAB worker as that worker starts.

**Note** The decode function must be available on the MATLAB worker’s path.

You can get the decode function on the worker’s path by either moving the file into a folder on the path (for example, `matlabroot/toolbox/local`), or by having the scheduler use `cd` in its command so that it starts the MATLAB worker from within the folder that contains the decode function.

In practice, the decode function might be identical for all workers on the cluster. In this case, all workers can use the same decode function file if it is accessible on a shared drive.

When a MATLAB worker starts, it automatically runs the file identified by the `MDCE_DECODE_FUNCTION` environment variable. This decode function runs before the worker does any processing of its task.

**Read the Job and Task Information**

When the environment variables have been transferred from the client to the worker nodes (either by the scheduler or some other means), the decode function of the MATLAB worker can read them with the `getenv` function.

With those values from the environment variables, the decode function must set the appropriate property values of the object that is its argument. The property values that must be set are the same as those in the corresponding submit function, except that instead of the cell array `TaskLocations`, each worker has only the individual string `TaskLocation`, which is one element of the `TaskLocations` cell array. Therefore, the properties you must set within the decode function on its argument object are as follows:

- `StorageConstructor`
- `StorageLocation`
- `JobLocation`
• TaskLocation

**Example — Write the Decode Function**

The decode function must read four environment variables and use their values to set the properties of the object that is the function’s output.

In this example, the decode function’s argument is the object `props`.

```matlab
function props = workerDecodeFunc(props)
 % Read the environment variables:
 storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
 storageLocation = getenv('MDCE_STORAGE_LOCATION');
 jobLocation = getenv('MDCE_JOB_LOCATION');
 taskLocation = getenv('MDCE_TASK_LOCATION');
 %
 % Set props object properties from the local variables:
 set(props, 'StorageConstructor', storageConstructor);
 set(props, 'StorageLocation', storageLocation);
 set(props, 'JobLocation', jobLocation);
 set(props, 'TaskLocation', taskLocation);
```

When the object is returned from the decode function to the MATLAB worker session, its values are used internally for managing job and task data.

**Example — Program and Run a Job in the Client**

1. **Create a Scheduler Object**

You use the `parcluster` function to create an object representing the cluster in your local MATLAB client session. Use a profile based on the generic type of cluster

```matlab
c = parcluster('MyGenericProfile')
```

If your cluster uses a shared file system for workers to access job and task data, set the `JobStorageLocation` and `HasSharedFilesystem` properties to specify where the job data is stored and that the workers should access job data directly in a shared file system.

```matlab
c.JobStorageLocation = '\share\scratch\jobdata'
```
c.HasSharedFilesystem = true

**Note** All nodes require access to the folder specified in the cluster object’s JobStorageLocation property.

If JobStorageLocation is not set, the default location for job data is the current working directory of the MATLAB client the first time you use parcluster to create an object for this type of cluster, which might not be accessible to the worker nodes.

If MATLAB is not on the worker’s system path, set the ClusterMatlabRoot property to specify where the workers are to find the MATLAB installation.

c.ClusterMatlabRoot = '\\apps\matlab\'

You can look at all the property settings on the scheduler object. If no jobs are in the JobStorageLocation folder, the Jobs property is a 0-by-1 array. All settable property values on a scheduler object are local to the MATLAB client, and are lost when you close the client session or when you remove the object from the client workspace with delete or clear all.

c

You must set the IndependentSubmitFcn property to specify the submit function for this cluster.

c.IndependentSubmitFcn = @mysubmitfunc

With the scheduler object and the user-defined submit and decode functions defined, programming and running a job is now similar to doing so with any other type of supported scheduler.

### 2. Create a Job

You create a job with the createJob function, which creates a job object in the client session. The job data is stored in the folder specified by the cluster object’s JobStorageLocation property.

j = createJob(c)
This statement creates the job object \( j \) in the client session.

**Note** Properties of a particular job or task should be set from only one computer at a time.

This generic scheduler job has somewhat different properties than a job that uses an MJS. For example, this job has no callback functions.

The job’s State property is pending. This state means the job has not been queued for running yet. This new job has no tasks, so its Tasks property is a 0-by-1 array.

The cluster’s Jobs property is now a 1-by-1 array of job objects, indicating the existence of your job.

c

### 3. Create Tasks

After you have created your job, you can create tasks for the job. Tasks define the functions to be evaluated by the workers during the running of the job. Often, the tasks of a job are identical except for different arguments or data. In this example, each task generates a 3-by-3 matrix of random numbers.

```plaintext
createTask(j, @rand, 1, {3,3});
```

The Tasks property of \( j \) is now a 5-by-1 matrix of task objects.

```plaintext
j.Tasks
```

Alternatively, you can create the five tasks with one call to `createTask` by providing a cell array of five cell arrays defining the input arguments to each task.
T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

4. Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before you continue in your MATLAB client session, you can use the wait function.

wait(j)

This function pauses MATLAB until the State property of j is 'finished' or 'failed'.

5. Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s OutputArguments property as a cell array. Use fetchOutputs to retrieve the results from all the tasks in the job.

results = fetchOutputs(j);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
0.4447 0.9218 0.4057
0.6154 0.7352 0.9355
0.7919 0.1763 0.9169
0.4103 0.3529 0.1389
Supplied Submit and Decode Functions

There are several submit and decode functions provided with the toolbox for your use with the generic scheduler interface. These files are in the folder

\texttt{matlabroot/toolbox/distcomp/examples/integration}

In this folder are subdirectories for each of several types of scheduler.

Depending on your network and cluster configuration, you might need to modify these files before they will work in your situation. Ask your system administrator for help.

At the time of publication, there are folders for PBS (\texttt{pbs}), and Platform LSF (\texttt{lsf}) schedulers, generic UNIX-based scripts (\texttt{ssh}), Sun Grid Engine (\texttt{sge}), and mpiexec on Microsoft Windows operating systems (\texttt{winmpiexec}). In addition, the \texttt{pbs}, \texttt{lsf}, and \texttt{sge} folders have subfolders called \texttt{shared}, \texttt{nonshared}, and \texttt{remoteSubmission}, which contain scripts for use in particular cluster configurations. Each of these subfolders contains a file called \texttt{README}, which provides instruction on where and how to use its scripts.

For each scheduler type, the folder (or configuration subfolder) contains wrappers, submit functions, and other job management scripts for independent and communicating jobs. For example, the folder \texttt{matlabroot/toolbox/distcomp/examples/integration/pbs/shared} contains the following files for use with a PBS scheduler:
### Files

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>independentSubmitFcn.m</td>
<td>Submit function for an independent job</td>
</tr>
<tr>
<td>communicatingSubmitFcn.m</td>
<td>Submit function for a communicating job</td>
</tr>
<tr>
<td>independentJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of an independent job</td>
</tr>
<tr>
<td>communicatingJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of a communicating job</td>
</tr>
<tr>
<td>deleteJobFcn.m</td>
<td>Script to delete a job from the scheduler</td>
</tr>
<tr>
<td>extractJobId.m</td>
<td>Script to get the job’s ID from the scheduler</td>
</tr>
<tr>
<td>getJobStateFcn.m</td>
<td>Script to get the job’s state from the scheduler</td>
</tr>
<tr>
<td>getSubmitString.m</td>
<td>Script to get the submission string for the scheduler</td>
</tr>
</tbody>
</table>

These files are all programmed to use the standard decode functions provided with the product, so they do not have specialized decode functions.

The folder for other scheduler types contains similar files. As more files or solutions for more schedulers might become available at any time, visit the support page for this product on the MathWorks Web site at http://www.mathworks.com/support/product/product.html?product=DM. This Web page also provides contact information in case you have any questions.

### Manage Jobs with Generic Scheduler

While you can use the `cancel` and `delete` methods on jobs that use the generic scheduler interface, by default these methods access or affect only the job data where it is stored on disk. To cancel or delete a job or task that is currently running or queued, you must provide instructions to the scheduler directing it what to do and when to do it. To accomplish this, the toolbox provides a means of saving data associated with each job or task from the scheduler, and a set of properties to define instructions for the scheduler upon each cancel or destroy request.
Save Job Scheduler Data
The first requirement for job management is to identify the job from the cluster’s perspective. When you submit a job to the cluster, the command to do the submission in your submit function can return from the scheduler some data about the job. This data typically includes a job ID. By storing that job ID with the job, you can later refer to the job by this ID when you send management commands to the scheduler. Similarly, you can store information, such as an ID, for each task. The toolbox function that stores this cluster data is `setJobClusterData`.

If your scheduler accommodates submission of entire jobs (collection of tasks) in a single command, you might get back data for the whole job and/or for each task. Part of your submit function might be structured like this:

```matlab
for ii = 1:props.NumberOfTasks
 define scheduler command per task
end
submit job to scheduler
data_array = parse data returned from scheduler %possibly NumberOfTasks-by-2 matrix
setJobClusterData(cluster, job, data_array)
```

If your scheduler accepts only submissions of individual tasks, you might get return data pertaining to only each individual tasks. In this case, your submit function might have code structured like this:

```matlab
for ii = 1:props.NumberOfTasks
 submit task to scheduler
 %Per-task settings:
 data_array(1,ii) = ... parse string returned from scheduler
 data_array(2,ii) = ... save ID returned from scheduler
 etc
end
setJobClusterData(scheduler, job, data_array)
```

Define Scheduler Commands in User Functions
With the scheduler data (such as the scheduler’s ID for the job or task) now stored on disk along with the rest of the job data, you can write code to control what the scheduler should do when that particular job or task is canceled or destroyed.
For example, you might create these four functions:

- `myCancelJob.m`
- `myDeleteJob.m`
- `myCancelTask.m`
- `myDeleteTask.m`

Your `myCancelJob.m` function defines what you want to communicate to your scheduler in the event that you use the `cancel` function on your job from the MATLAB client. The toolbox takes care of the job state and any data management with the job data on disk, so your `myCancelJob.m` function needs to deal only with the part of the job currently running or queued with the scheduler. The toolbox function that retrieves scheduler data from the job is `getJobClusterData`. Your cancel function might be structured something like this:

```matlab
function myCancelTask(sched, job)

 array_data = getJobClusterData(clust, job)
 job_id = array_data(...) % Extract the ID from the data, depending on how
 % it was stored in the submit function above.
 command to scheduler canceling job job_id

In a similar way, you can define what do to for deleting a job, and what to do for canceling and deleting tasks.

Delete or Cancel a Running Job

After your functions are written, you set the appropriate properties of the cluster object with handles to your functions. The corresponding cluster properties are:

- `CancelJobFcn`
- `DeleteJobFcn`
- `CancelTaskFcn`
- `DeleteTaskFcn`
You can set the properties in the Cluster Profile Manager for your cluster, or on the command line:

```matlab
c = parcluster('MyGenericProfile');
% set required properties
  c.CancelJobFcn = @myCancelJob
  c.DeleteJobFcn = @myDeleteJob
  c.CancelTaskFcn = @myCancelTask
  c.DeleteTaskFcn = @myDeleteTask

Continue with job creation and submission as usual.

j1 = createJob(c);
for ii = 1:n
    t(ii) = createTask(j1,...)
end
submit(j1)
```

While the job is running or queued, you can cancel or delete the job or a task.

This command cancels the task and moves it to the finished state, and triggers execution of `myCancelTask`, which sends the appropriate commands to the scheduler:

```matlab
cancel(t(4))
```

This command deletes job data for `j1`, and triggers execution of `myDeleteJob`, which sends the appropriate commands to the scheduler:

```matlab
delete(j1)
```

Get State Information About a Job or Task

When using a third-party scheduler, it is possible that the scheduler itself can have more up-to-date information about your jobs than what is available to the toolbox from the job storage location. To retrieve that information from the scheduler, you can write a function to do that, and set the value of the `GetJobStateFcn` property as a handle to your function.

Whenever you use a toolbox function such as `wait`, etc., that accesses the state of a job on the generic scheduler, after retrieving the state from storage, the toolbox runs the function specified by the `GetJobStateFcn` property, and
returns its result in place of the stored state. The function you write for this purpose must return a valid string value for the `State` of a job object.

When using the generic scheduler interface in a nonshared file system environment, the remote file system might be slow in propagating large data files back to your local data location. Therefore, a job’s `State` property might indicate that the job is finished some time before all its data is available to you.

Summary
The following list summarizes the sequence of events that occur when running a job that uses the generic scheduler interface:

1. Provide a submit function and a decode function. Be sure the decode function is on all the MATLAB workers’ search paths.

The following steps occur in the MATLAB client session:

2. Define the `IndependentSubmitFcn` property of your scheduler object to point to the submit function.

3. Send your job to the scheduler.

   ```matlab
   submit(job)
   ```

4. The client session runs the submit function.

5. The submit function sets environment variables with values derived from its arguments.

6. The submit function makes calls to the scheduler — generally, a call for each task (with environment variables identified explicitly, if necessary).

The following step occurs in your network:

7. For each task, the scheduler starts a MATLAB worker session on a cluster node.

The following steps occur in each MATLAB worker session:
8 The MATLAB worker automatically runs the decode function, finding it on the path.

9 The decode function reads the pertinent environment variables.

10 The decode function sets the properties of its argument object with values from the environment variables.

11 The MATLAB worker uses these object property values in processing its task without your further intervention.
Program Communicating Jobs

- “Program Communicating Jobs” on page 8-2
- “Program Communicating Jobs for a Supported Scheduler” on page 8-4
- “Program Communicating Jobs for a Generic Scheduler” on page 8-8
- “Further Notes on Communicating Jobs” on page 8-11
Program Communicating Jobs

Communicating jobs are those in which the workers can communicate with each other during the evaluation of their tasks. A communicating job consists of only a single task that runs simultaneously on several workers, usually with different data. More specifically, the task is duplicated on each worker, so each worker can perform the task on a different set of data, or on a particular segment of a large data set. The workers can communicate with each other as each executes its task. The function that the task runs can take advantage of a worker’s awareness of how many workers are running the job, which worker this is among those running the job, and the features that allow workers to communicate with each other.

In principle, you create and run communicating jobs similarly to the way you “Program Independent Jobs” on page 7-2:

1 Define and select a cluster profile.
2 Find a cluster.
3 Create a communicating job.
4 Create a task.
5 Submit the job for running. For details about what each worker performs for evaluating a task, see “Submit a Job to the Job Queue” on page 7-12.
6 Retrieve the results.

The differences between independent jobs and communicating jobs are summarized in the following table.
MATLAB workers perform the tasks but do not communicate with each other.

MATLAB workers can communicate with each other during the running of their tasks.

You define any number of tasks in a job.

You define only one task in a job. Duplicates of that task run on all workers running the communicating job.

Tasks need not run simultaneously. Tasks are distributed to workers as the workers become available, so a worker can perform several of the tasks in a job.

Tasks run simultaneously, so you can run the job only on as many workers as are available at run time. The start of the job might be delayed until the required number of workers is available.

Some of the details of a communicating job and its tasks might depend on the type of scheduler you are using. The following sections discuss different schedulers and explain programming considerations:

- “Program Communicating Jobs for a Supported Scheduler” on page 8-4
- “Program Communicating Jobs for a Generic Scheduler” on page 8-8
- “Further Notes on Communicating Jobs” on page 8-11
Program Communicating Jobs for a Supported Scheduler

<table>
<thead>
<tr>
<th>In this section...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Schedulers and Conditions” on page 8-4</td>
</tr>
<tr>
<td>“Code the Task Function” on page 8-4</td>
</tr>
<tr>
<td>“Code in the Client” on page 8-5</td>
</tr>
</tbody>
</table>

Schedulers and Conditions
You can run a communicating job using any type of scheduler. This section illustrates how to program communicating jobs for supported schedulers (MJS, local scheduler, Microsoft Windows HPC Server (including CCS), Platform LSF, PBS Pro, TORQUE, or mpiexec).

To use this supported interface for communicating jobs, the following conditions must apply:

- You must have a shared file system between client and cluster machines
- You must be able to submit jobs directly to the scheduler from the client machine

Note When using any third-party scheduler for running a communicating job, if all these conditions are not met, you must use the generic scheduler interface. (Communicating jobs also include pmode, parpool, spmd, and parfor.) See “Program Communicating Jobs for a Generic Scheduler” on page 8-8.

Code the Task Function
In this section a simple example illustrates the basic principles of programming a communicating job with a third-party scheduler. In this example, the worker whose labindex value is 1 creates a magic square comprised of a number of rows and columns that is equal to the number of workers running the job (numlabs). In this case, four workers run a communicating job with a 4-by-4 magic square. The first worker broadcasts the matrix with labBroadcast to all the other workers, each of which...
calculates the sum of one column of the matrix. All of these column sums are combined with the \texttt{gplus} function to calculate the total sum of the elements of the original magic square.

The function for this example is shown below.

```matlab
function total_sum = colsum
    if labindex == 1
        % Send magic square to other workers
        A = labBroadcast(1,magic(numlabs))
    else
        % Receive broadcast on other workers
        A = labBroadcast(1)
    end

    % Calculate sum of column identified by labindex for this worker
    column_sum = sum(A(:,labindex))

    % Calculate total sum by combining column sum from all workers
    total_sum = gplus(column_sum)

This function is saved as the file \texttt{colsum.m} on the path of the MATLAB client. It will be sent to each worker by the job’s \texttt{AttachedFiles} property.

While this example has one worker create the magic square and broadcast it to the other workers, there are alternative methods of getting data to the workers. Each worker could create the matrix for itself. Alternatively, each worker could read its part of the data from a file on disk, the data could be passed in as an argument to the task function, or the data could be sent in a file contained in the job’s \texttt{AttachedFiles} property. The solution to choose depends on your network configuration and the nature of the data.

**Code in the Client**

As with independent jobs, you choose a profile and create a cluster object in your MATLAB client by using the \texttt{parcluster} function. There are slight differences in the profiles, depending on the scheduler you use, but using profiles to define as many properties as possible minimizes coding differences between the scheduler types.
You can create and configure the cluster object with this code:

c = parcluster('MyProfile')

where 'MyProfile' is the name of a cluster profile for the type of scheduler you are using. Any required differences for various cluster options are controlled in the profile. You can have one or more separate profiles for each type of scheduler. For complete details, see “Clusters and Cluster Profiles” on page 6-14. Create or modify profiles according to the instructions of your system administrator.

When your cluster object is defined, you create the job object with the createCommunicatingJob function. The job Type property must be set as 'SPMD' when you create the job.

cjob = createCommunicatingJob(c,'Type','SPMD');

The function file colsum.m (created in “Code the Task Function” on page 8-4) is on the MATLAB client path, but it has to be made available to the workers. One way to do this is with the job’s AttachedFiles property, which can be set in the profile you used, or by:

cjob.AttachedFiles = {'colsum.m'}

Here you might also set other properties on the job, for example, setting the number of workers to use. Again, profiles might be useful in your particular situation, especially if most of your jobs require many of the same property settings. To run this example on four workers, you can established this in the profile, or by the following client code:

cjob.NumWorkersRange = 4

You create the job’s one task with the usual createTask function. In this example, the task returns only one argument from each worker, and there are no input arguments to the colsum function.

t = createTask(cjob, @colsum, 1, {})

Use submit to run the job.

submit(cjob)
Make the MATLAB client wait for the job to finish before collecting the results. The results consist of one value from each worker. The `gplus` function in the task shares data between the workers, so that each worker has the same result.

```matlab
wait(cjob)
results = fetchOutputs(cjob)
results =
 [136]
 [136]
 [136]
 [136]
 [136]
```
Program Communicating Jobs for a Generic Scheduler

In this section...

| “Introduction” on page 8-8 |
| “Code in the Client” on page 8-8 |

Introduction

This section discusses programming communicating jobs using the generic scheduler interface. This interface lets you execute jobs on your cluster with any scheduler you might have.

The principles of using the generic scheduler interface for communicating jobs are the same as those for distributed jobs. The overview of the concepts and details of submit and decode functions for distributed jobs are discussed fully in “Program Independent Jobs for a Generic Scheduler” on page 7-24 in the chapter on Programming Distributed Jobs.

Code in the Client

Configure the Scheduler Object

Coding a communicating job for a generic scheduler involves the same procedure as coding an independent job.

1. Create an object representing your cluster with parcluster.

2. Set the appropriate properties on the cluster object if they are not defined in the profile. Because the scheduler itself is often common to many users and applications, it is probably best to use a profile for programming these properties. See “Clusters and Cluster Profiles” on page 6-14.

Among the properties required for a communicating job is CommunicatingSubmitFcn. You can write your own communicating submit and decode functions, or use those come with the product for various schedulers and platforms; see the following section, “Supplied Submit and Decode Functions” on page 8-9.
3 Use `createCommunicatingJob` to create a communicating job object for your cluster.

4 Create a task, run the job, and retrieve the results as usual.

**Supplied Submit and Decode Functions**

There are several submit and decode functions provided with the toolbox for your use with the generic scheduler interface. These files are in the folder

`matlabroot/toolbox/distcomp/examples/integration`

In this folder are subfolders for each of several types of scheduler.

Depending on your network and cluster configuration, you might need to modify these files before they will work in your situation. Ask your system administrator for help.

At the time of publication, there are folders for PBS (`pbs`), and Platform LSF (`lsf`) schedulers, generic UNIX-based scripts (`ssh`), Sun Grid Engine (`sge`), and mpiexec on Microsoft Windows operating systems (`winmpiexec`). In addition, the `pbs`, `lsf`, and `sge` folders have subfolders called `shared`, `nonshared`, and `remoteSubmission`, which contain scripts for use in particular cluster configurations. Each of these subfolders contains a file called `README`, which provides instruction on where and how to use its scripts.

For each scheduler type, the folder (or configuration subfolder) contains wrappers, submit functions, and other job management scripts for independent and communicating jobs. For example, the folder `matlabroot/toolbox/distcomp/examples/integration/pbs/shared` contains the following files for use with a PBS scheduler:

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>independentSubmitFcn.m</td>
<td>Submit function for an independent job</td>
</tr>
<tr>
<td>communicatingSubmitFcn.m</td>
<td>Submit function for a communicating job</td>
</tr>
<tr>
<td>independentJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of an independent job</td>
</tr>
<tr>
<td>Filename</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>communicatingJobWrapper.sh</td>
<td>Script that is submitted to PBS to start workers that evaluate the tasks of a communicating job</td>
</tr>
<tr>
<td>deleteJobFcn.m</td>
<td>Script to delete a job from the scheduler</td>
</tr>
<tr>
<td>extractJobId.m</td>
<td>Script to get the job’s ID from the scheduler</td>
</tr>
<tr>
<td>getJobStateFcn.m</td>
<td>Script to get the job’s state from the scheduler</td>
</tr>
<tr>
<td>getSubmitString.m</td>
<td>Script to get the submission string for the scheduler</td>
</tr>
</tbody>
</table>

These files are all programmed to use the standard decode functions provided with the product, so they do not have specialized decode functions. For communicating jobs, the standard decode function provided with the product is `parallel.cluster.generic.communicatingDecodeFcn`. You can view the required variables in this file by typing

```
edit parallel.cluster.generic.communicatingDecodeFcn
```

The folder for other scheduler types contain similar files. As more files or solutions for more schedulers might become available at any time, visit the support page for this product on the MathWorks Web site at [http://www.mathworks.com/support/product/product.html?product=DM](http://www.mathworks.com/support/product/product.html?product=DM). This Web page also provides contact information in case you have any questions.
Number of Tasks in a Communicating Job

Although you create only one task for a communicating job, the system copies this task for each worker that runs the job. For example, if a communicating job runs on four workers, the Tasks property of the job contains four task objects. The first task in the job’s Tasks property corresponds to the task run by the worker whose labindex is 1, and so on, so that the ID property for the task object and labindex for the worker that ran that task have the same value. Therefore, the sequence of results returned by the fetchOutputs function corresponds to the value of labindex and to the order of tasks in the job’s Tasks property.

Avoid Deadlock and Other Dependency Errors

Because code running in one worker for a communicating job can block execution until some corresponding code executes on another worker, the potential for deadlock exists in communicating jobs. This is most likely to occur when transferring data between workers or when making code dependent upon the labindex in an if statement. Some examples illustrate common pitfalls.

Suppose you have a codistributed array D, and you want to use the gather function to assemble the entire array in the workspace of a single worker.

```matlab
if labindex == 1
 assembled = gather(D);
end
```

The reason this fails is because the gather function requires communication between all the workers across which the array is distributed. When the if statement limits execution to a single worker, the other workers required for execution of the function are not executing the statement. As an alternative,
you can use `gather` itself to collect the data into the workspace of a single worker: `assembled = gather(D, 1)`.

In another example, suppose you want to transfer data from every worker to the next worker on the right (defined as the next higher `labindex`). First you define for each worker what the workers on the left and right are.

```c
from_lab_left = mod(labindex - 2, numlabs) + 1;
to_lab_right = mod(labindex, numlabs) + 1;
```

Then try to pass data around the ring.

```c
labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);
```

The reason this code might fail is because, depending on the size of the data being transferred, the `labSend` function can block execution in a worker until the corresponding receiving worker executes its `labReceive` function. In this case, all the workers are attempting to send at the same time, and none are attempting to receive while `labSend` has them blocked. In other words, none of the workers get to their `labReceive` statements because they are all blocked at the `labSend` statement. To avoid this particular problem, you can use the `labSendReceive` function.
GPU Computing

- “GPU Capabilities and Performance” on page 9-2
- “Establish Arrays on a GPU” on page 9-3
- “Run Built-In Functions on a GPU” on page 9-9
- “Run Element-wise MATLAB Code on a GPU” on page 9-13
- “Identify and Select a GPU Device” on page 9-19
- “Run CUDA or PTX Code on GPU” on page 9-21
- “Run MEX-Functions Containing CUDA Code” on page 9-33
- “Measure and Improve GPU Performance” on page 9-38
GPU Capabilities and Performance

In this section...

| “Capabilities” on page 9-2 |
| “Performance Benchmarking” on page 9-2 |

Capabilities

Parallel Computing Toolbox enables you to program MATLAB to use your computer’s graphics processing unit (GPU) for matrix operations. In many cases, execution in the GPU is faster than in the CPU, so this feature might offer improved performance.

Toolbox capabilities with the GPU let you:

- “Identify and Select a GPU Device” on page 9-19
- “Transfer Arrays Between Workspace and GPU” on page 9-3
- “Run Built-In Functions on a GPU” on page 9-9
- “Run Element-wise MATLAB Code on a GPU” on page 9-13
- “Run CUDA or PTX Code on GPU” on page 9-21
- “Run MEX-Functions Containing CUDA Code” on page 9-33

Performance Benchmarking

You can use gputimeit to measure the execution time of functions that run on the GPU. For more details, see “Measure and Improve GPU Performance” on page 9-38.

The MATLAB Central file exchange offers a function called gpubench, which measures the execution time for various MATLAB GPU tasks and estimates the peak performance of your GPU. See http://www.mathworks.com/matlabcentral/fileexchange/34080-gpubench.
Establish Arrays on a GPU

In this section...

“Transfer Arrays Between Workspace and GPU” on page 9-3
“Create GPU Arrays Directly” on page 9-4
“Examine gpuArray Characteristics” on page 9-7

Transfer Arrays Between Workspace and GPU

Send Arrays to the GPU

A gpuArray in MATLAB represents an array that is stored on the GPU. Use the gpuArray function to transfer an array from MATLAB to the GPU:

N = 6;
M = magic(N);
G = gpuArray(M);

G is now a MATLAB gpuArray object that represents the magic square stored on the GPU. The input provided to gpuArray must be nonsparse, and either 'single', 'double', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', or 'logical'. (See also “Considerations for Complex Numbers” on page 9-11.)

Retrieve Arrays from the GPU

Use the gather function to retrieve arrays from the GPU to the MATLAB workspace. This takes an array that is on the GPU represented by a gpuArray object, and makes it available in the MATLAB workspace as a regular MATLAB array. You can use isequal to verify that you get the correct values back:

G = gpuArray(ones(100,'uint32'));
D = gather(G);
OK = isequal(D,ones(100,'uint32'))
Examples: Transfer Array

Transfer Array to the GPU. Create a 1000-by-1000 random matrix in MATLAB, and then transfer it to the GPU:

\[
X = \text{rand}(1000);
G = \text{gpuArray}(X);
\]

Transfer Array of a Specified Precision. Create a matrix of double-precision random values in MATLAB, and then transfer the matrix as single-precision from MATLAB to the GPU:

\[
X = \text{rand}(1000);
G = \text{gpuArray}(	ext{single}(X));
\]

Construct an Array for Storing on the GPU. Construct a 100-by-100 matrix of uint32 ones and transfer it to the GPU. You can accomplish this with a single line of code:

\[
G = \text{gpuArray}(	ext{ones}(100, 'uint32'));
\]

Create GPU Arrays Directly

A number of static methods on the gpuArray class allow you to directly construct arrays on the GPU without having to transfer them from the MATLAB workspace. These constructors require only array size and data class information, so they can construct an array without any element data from the workspace. Use any of the following to directly create an array on the GPU:

<table>
<thead>
<tr>
<th>Method</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpuArray.ones</td>
<td>gpuArray.colon</td>
</tr>
<tr>
<td>gpuArray.zeros</td>
<td>gpuArray.rand</td>
</tr>
<tr>
<td>gpuArray.inf</td>
<td>gpuArray.randi</td>
</tr>
<tr>
<td>gpuArray.nan</td>
<td>gpuArray.randn</td>
</tr>
<tr>
<td>gpuArray.true</td>
<td>gpuArray.linspace</td>
</tr>
<tr>
<td>gpuArray.false</td>
<td>gpuArray.logspace</td>
</tr>
<tr>
<td>gpuArray.eye</td>
<td></td>
</tr>
</tbody>
</table>

For a complete list of available static methods in any release, type
methods('gpuArray')

The static constructors appear at the bottom of the output from this command.

For help on any one of the constructors, type

```
help gpuArray/functionname
```

For example, to see the help on the colon constructor, type

```
help gpuArray/colon
```

**Example: Construct an Identity Matrix on the GPU**

To create a 1024-by-1024 identity matrix of type `int32` on the GPU, type

```
II = gpuArray.eye(1024,'int32');
size(II)
```

```
1024 1024
```

With one numerical argument, you create a 2-dimensional matrix.

**Example: Construct a Multidimensional Array on the GPU**

To create a 3-dimensional array of ones with data class `double` on the GPU, type

```
G = gpuArray.ones(100, 100, 50);
size(G)
```

```
100 100 50
```

```
classUnderlying(G)
double
```

The default class of the data is `double`, so you do not have to specify it.

**Example: Construct a Vector on the GPU**

To create a 8192-element column vector of zeros on the GPU, type

```
Z = gpuArray.zeros(8192, 1);
size(Z)
```

```
8192 1
```
For a column vector, the size of the second dimension is 1.

**Control the Random Stream for gpuArray**

The following functions control the random number stream on the GPU:

<table>
<thead>
<tr>
<th>parallel.gpu.rng</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.gpu.RandStream</td>
</tr>
</tbody>
</table>

These functions perform in the same way as `rng` and `RandStream` in MATLAB, but with certain limitations on the GPU. For more information on the use and limits of these functions, type

`help parallel.gpu.rng`

`help parallel.gpu.RandStream`

The GPU uses the combined multiplicative recursive generator by default to create uniform random values, and uses inversion for creating normal values. This is not the default stream in a client MATLAB session on the CPU, but is the equivalent of

`RandStream('CombRecursive','NormalTransform','Inversion');`

However, a MATLAB worker session has the same default stream as its GPU, even if it is a worker in a local cluster on the same machine. That is, a MATLAB client and workers do not have the same default stream.

In most cases, it does not matter that the default random stream on the GPU is not the same as the default stream in MATLAB on the CPU. But if you need to reproduce the same stream on both GPU and CPU, you can set the CPU random stream accordingly, and use the same seed to set both streams:

```matlab
seed=0; n=4;
cpu_stream = RandStream('CombRecursive','Seed',seed,'NormalTransform','Inversion');
RandStream.setGlobalStream(cpu_stream);

gpu_stream = parallel.gpu.RandStream('CombRecursive','Seed',seed);
parallel.gpu.RandStream.setGlobalStream(gpu_stream);
```
Establish Arrays on a GPU

```
r = rand(n); % On CPU
R = gpuArray.rand(n); % On GPU
OK = isequal(r,R)
```

There are three supported random generators on the GPU. The combined multiplicative recursive generator (MRG32K3A) is the default because it is a popular and reliable industry standard generator for parallel computing. You can choose the GPU random generator with any of the following commands:

```
parallel.gpu.RandStream('combRecursive')
parallel.gpu.RandStream('Philox4x32-10')
parallel.gpu.RandStream('Threefry4x64-20')
```

For more information about generating random numbers on a GPU, and a comparison between GPU and CPU generation, see “Control Random Number Streams” on page 6-34. For an example that shows performance comparisons for different random generators, see Generating Random Numbers on a GPU.

**Examine gpuArray Characteristics**

There are several functions available for examining the characteristics of a gpuArray object:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classUnderlying</td>
<td>Class of the underlying data in the array</td>
</tr>
<tr>
<td>existsOnGPU</td>
<td>Indication if array exists on the GPU and is accessible</td>
</tr>
<tr>
<td>isreal</td>
<td>Indication if array data is real</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td>size</td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>

For example, to examine the size of the gpuArray object `G`, type:

```
G = gpuArray.rand(100);
s = size(G)
```
100  100
Run Built-In Functions on a GPU

MATLAB

A subset of the MATLAB built-in functions supports the use of gpuArray. Whenever any of these functions is called with at least one gpuArray as an input argument, it executes on the GPU and returns a gpuArray as the result. You can mix input from gpuArray and MATLAB workspace data in the same function call. These functions include the discrete Fourier transform (fft), matrix multiplication (mtimes), and left matrix division (mldivide).

The following functions and their symbol operators are enhanced to accept gpuArray input arguments so that they execute on the GPU:

```
abs complex filter ipermute mldivide sec
acos cond filter2 iscolumn mod sech
acosh conj find isequal mpower shiftdim
acot conv fft isequaln mrdivide sign
acoth conv2 fft2 isequaln mtimes
acsc convn fftn isnan NaN sinh
acsch cos fftshift isfloat ndgrid sin
all cosh fix isnan ndims single
angle cot flip isinteger ne size
any coth flipr islogical nnz size
arrayfun cov flipud ismatrix norm sqrt
asec cross floor ismember normest squeeze
asech csc fprintf isnan not std
asin csch full isnumeric num2str sub2ind
asinh ctranspose gamma isreal numel subsasgn
atan cumprod gammaln isrow ones subsindex
atan2 csum gather issorted pagefun subsref
atanh det ge issparse perms sum
beta diag gt isvector permute svd
betaln diff horzcat kron plot (and related) tan
bitand disp hypot ldivide plus tanh
bitcmp display ifft le pow2 times
bitget dot ifft2 length power trace
bitor double ifftn log prod transpose
bitset eig ifftshift log10 qr tril
```
See the release notes for information about updates for individual functions.

For the complete list of available functions that support gpuArrays in your current version, including functions in your installed toolboxes, call `methods` on the `gpuArray` class:

```matlab
methods('gpuArray')
```

To get information about any restrictions or limitations concerning the support of any of these functions for `gpuArray` objects, type:

```matlab
help gpuArray/functionname
```

For example, to see the help on the overload of `lu`, type

```matlab
help gpuArray/lu
```

In most cases, if any of the input arguments to these functions is a `gpuArray`, any output arrays are `gpuArrays`. If the output is always scalar, it returns as MATLAB data in the workspace. If the result is a `gpuArray` of complex data and all the imaginary parts are zero, these parts are retained and the data remains complex. This could have an impact when using `sort`, `isreal`, etc.

**Example: Call Functions with `gpuArrays`**

This example uses the `fft` and `real` functions, along with the arithmetic operators `+` and `*`. All the calculations are performed on the GPU, then `gather` retrieves the data from the GPU back to the MATLAB workspace.
Ga = gpuArray.rand(1000,'single');
Gfft = fft(Ga);
Gb = (real(Gfft) + Ga) * 6;
G = gather(Gb);

The `whos` command is instructive for showing where each variable’s data is stored.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1000x1000</td>
<td>400000</td>
<td>single</td>
</tr>
<tr>
<td>Ga</td>
<td>1000x1000</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>Gb</td>
<td>1000x1000</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>Gfft</td>
<td>1000x1000</td>
<td>108</td>
<td>gpuArray</td>
</tr>
</tbody>
</table>

Notice that all the arrays are stored on the GPU (`gpuArray`), except for G, which is the result of the `gather` function.

**Considerations for Complex Numbers**

If the output of a function running on the GPU could potentially be complex, you must explicitly specify its input arguments as complex. This applies to `gpuArray` or to functions called in code run by `arrayfun`.

For example, if creating a `gpuArray` which might have negative elements, use `G = gpuArray(complex(p))`, then you can successfully execute `sqrt(G)`.

Or, within a function passed to `arrayfun`, if `x` is a vector of real numbers, and some elements have negative values, `sqrt(x)` will generate an error; instead you should call `sqrt(complex(x))`.

The following table lists the functions that might return complex data, along with the input range over which the output remains real.

<table>
<thead>
<tr>
<th>Function</th>
<th>Input Range for Real Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>acos(x)</code></td>
<td><code>abs(x) &lt;= 1</code></td>
</tr>
<tr>
<td><code>acosh(x)</code></td>
<td><code>x &gt;= 1</code></td>
</tr>
<tr>
<td><code>acoth(x)</code></td>
<td><code>x &gt;= 1</code></td>
</tr>
<tr>
<td>Function</td>
<td>Input Range for Real Output</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>acsc(x)</td>
<td>x &gt;= 1</td>
</tr>
<tr>
<td>asec(x)</td>
<td>x &gt;= 1</td>
</tr>
<tr>
<td>asech(x)</td>
<td>0 &lt;= x &lt;= 1</td>
</tr>
<tr>
<td>asin(x)</td>
<td>abs(x) &lt;= 1</td>
</tr>
<tr>
<td>atanh</td>
<td>abs(x) &lt;= 1</td>
</tr>
<tr>
<td>log(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>log1p(x)</td>
<td>x &gt;= 1</td>
</tr>
<tr>
<td>log10(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>log2(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>power(x,y)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>reallog(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>realsqrt(x)</td>
<td>x &gt;= 0</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>x &gt;= 0</td>
</tr>
</tbody>
</table>
Run Element-wise MATLAB Code on a GPU

In this section...

“MATLAB Code vs. gpuArray Objects” on page 9-13
“Run Your MATLAB Functions on a GPU” on page 9-13
“Example: Run Your MATLAB Code” on page 9-14
“Supported MATLAB Code” on page 9-15

MATLAB Code vs. gpuArray Objects

You have options for performing MATLAB calculations on the GPU:

- You can transfer or create data on the GPU, and use the resulting gpuArray as input to enhanced built-in functions that support them. For more information and a list of functions that support gpuArray as inputs, see “Run Built-In Functions on a GPU” on page 9-9.
- You can run your own MATLAB function of element-wise operations on a GPU.

Your decision on which solution to adopt depends on whether the functions you require are enhanced to support gpuArray, and the performance impact of transferring data to/from the GPU.

Run Your MATLAB Functions on a GPU

To execute your MATLAB function on a GPU, call arrayfun or bsxfun with a function handle to the MATLAB function as the first input argument:

\[
\text{result} = \text{arrayfun}(@\text{myFunction}, \text{arg1}, \text{arg2});
\]

Subsequent arguments provide inputs to the MATLAB function. These input arguments can be workspace data or gpuArray. If any of the input arguments is a gpuArray, the function executes on the GPU and returns a gpuArray. (If none of the inputs is a gpuArray, then arrayfun and bsxfun execute in the CPU.)
Note arrayfun and bsxfun support only element-wise operations on a GPU.

See the arrayfun and bsxfun reference pages for descriptions of their available options.

Example: Run Your MATLAB Code

In this example, a small function applies correction data to an array of measurement data. The function defined in the file myCal.m is:

```matlab
function c = myCal(rawdata, gain, offst)
c = (rawdata .* gain) + offst;
```

The function performs only element-wise operations when applying a gain factor and offset to each element of the rawdata array.

Create some nominal measurement:

```matlab
meas = ones(1000)*3; % 1000-by-1000 matrix
```

The function allows the gain and offset to be arrays of the same size as rawdata, so that unique corrections can be applied to individual measurements. In a typical situation, you might keep the correction data on the GPU so that you do not have to transfer it for each application:

```matlab
gn = gpuArray(rand(1000))/100 + 0.995;
offs = gpuArray(rand(1000))/50 - 0.01;
```

Run your calibration function on the GPU:

```matlab
corrected = arrayfun(@myCal, meas, gn, offs);
```

This runs on the GPU because the input arguments gn and offs are already in GPU memory.

Retrieve the corrected results from the GPU to the MATLAB workspace:

```matlab
results = gather(corrected);
```
**Supported MATLAB Code**

The function you pass into `arrayfun` or `bsxfun` can contain the following built-in MATLAB functions and operators:

- `abs`  `double`  `log10`  `sinh`
- `and`  `eps`  `log1p`  `sqrt`
- `acos`  `eq`  `logical`  `tan`
- `acosh`  `erf`  `lt`  `tanh`
- `acot`  `erfc`  `max`  `times`
- `acoth`  `erfcinv`  `min`  `true`
- `acsc`  `erfcx`  `minus`  `uint8`
- `acsch`  `erfinv`  `mod`  `uint16`
- `asec`  `exp`  `NaN`  `uint32`
- `asech`  `expm1`  `ne`  `uint64`
- `asin`  `false`  `not`  `xor`
- `asinh`  `fix`  `or`
- `atan`  `floor`  `pi`
- `atan2`  `gamma`  `plus`  `+`
- `atanh`  `gammaln`  `power`  `.*`
- `beta`  `ge`  `real`  `==`
- `betaln`  `gt`  `rand`  `/`
- `bitand`  `hypot`  `randi`  `\`
- `bitcmp`  `imag`  `randn`  `^
- `bitget`  `Inf`  `rdivide`  `==`
- `bitor`  `int8`  `real`  `~=
- `bitset`  `int16`  `reallog`  `<`
- `bitshift`  `int32`  `realmax`  `<=`
- `bitxor`  `int64`  `realmin`  `>
- `ceil`  `intmax`  `realpow`  `>=`
- `complex`  `intmin`  `realsqrt`  `&`
- `conj`  `isfinite`  `rem`  `|`
- `cos`  `isinf`  `round`  `-`
- `cosh`  `isnan`  `sec`  `&&`
- `cot`  `ldivide`  `sech`  `||`
- `coth`  `le`  `sign`
- `csc`  `log`  `sin`
- `csch`  `log2`  `single`

Scalar expansion versions of the following:
- *
- /
- \`
- ^

Branching instructions:
- `break`
- `continue`
- `else`
- `elseif`
- `for`
- `if`
- `return`
- `while`
Generate Random Numbers on a GPU

The function you pass to `arrayfun` or `bsxfun` for execution on a GPU can contain the random number generator functions `rand`, `randi`, and `randn`. However, the GPU does not support the complete functionality that MATLAB does.

`arrayfun` and `bsxfun` support the following functions for random matrix generation on the GPU:

- `rand`
- `rand()`
- `rand('single')`
- `rand('double')`
- `randn`
- `randn()`
- `randn('single')`
- `randn('double')`
- `randn('int32')`
- `randn('uint32')`

You do not specify the array size for random generation. Instead, the number of generated random values is determined by the sizes of the input variables to your function. In effect, there will be enough random number elements to satisfy the needs of any input or output variables.

For example, suppose your function `myfun.m` contains the following code that includes generating and using the random matrix `R`:

```matlab
function Y = myfun(X)
 R = rand();
 Y = R.*X;
end
```

If you use `arrayfun` to run this function with an input variable that is a `gpuArray`, the function runs on the GPU, where the number of random elements for `R` is determined by the size of `X`, so you do not need to specify it. The following code passes the `gpuArray` matrix `G` to `myfun` on the GPU:

```matlab
G = 2*gpuArray.ones(4,4)
H = arrayfun(@myfun, G)
```
Because \( G \) is a 4-by-4 gpuArray, \( myfun \) generates 16 random value scalar elements for \( R \), one for each calculation with an element of \( G \).

Random number generation by \texttt{arrayfun} and \texttt{bsxfun} on the GPU uses the same global stream as \texttt{gpuArray} random generation as described in “Control the Random Stream for \texttt{gpuArray}” on page 9-6. For more information about generating random numbers on a GPU, and a comparison between GPU and CPU generation, see “Control Random Number Streams” on page 6-34. For an example that shows performance comparisons for different random generators, see Generating Random Numbers on a GPU.

\section*{Tips and Restrictions}

The following limitations apply to the code within the function that \texttt{arrayfun} or \texttt{bsxfun} is evaluating on a GPU.

\begin{itemize}
  \item Anonymous functions do not have access to their parent function workspace.
  \item A P-code file cannot contain a call to \texttt{arrayfun} or \texttt{bsxfun} with \texttt{gpuArray} data.
  \item Overloading the supported functions is not allowed.
  \item The code cannot call scripts.
  \item \texttt{arrayfun} and \texttt{bsxfun} support indexing and accessing variables of outer functions from within nested functions; for an example of this usage see Stencil Operations on a GPU. However, nested functions have read-only access to variables of the MATLAB workspace, i.e., those variables that exist in MATLAB before the \texttt{arrayfun} evaluation on the GPU.
  \item \texttt{subsref} indexing is supported for variables in the MATLAB workspace. \texttt{subsasgn} indexing is not supported.
  \item The following language features are not supported: persistent or global variables, \texttt{parfor}, \texttt{spmd}, \texttt{switch}, and \texttt{try/catch}.
  \item All double calculations are IEEE-compliant, but because of hardware limitations on devices of compute capability 1.3, single-precision calculations on these devices are not IEEE-compliant.
  \item Like \texttt{arrayfun} in MATLAB, matrix exponential power, multiplication, and division (\(^\wedge, *, /, \backslash\)) perform element-wise calculations only.
\end{itemize}
• There is no ans variable to hold unassigned computation results. Make sure to explicitly assign to variables the results of all calculations that you need to access.

• When generating random matrices with rand, randi, or randn, you do not need to specify the matrix size, and each element of the matrix has its own random stream.
Identify and Select a GPU Device

If you have only one GPU in your computer, that GPU is the default. If you have more than one GPU device in your computer, you can use the following functions to identify and select which device you want to use:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpuDeviceCount</td>
<td>The number of GPU devices in your computer</td>
</tr>
<tr>
<td>gpuDevice</td>
<td>Select which device to use, or see which device is selected and view its properties</td>
</tr>
</tbody>
</table>

Example: Select a GPU

This example shows how to identify and select a GPU for your computations.

1. Determine how many GPU devices are in your computer:

   gpuDeviceCount

   2

2. With two devices, the first is the default. You can examine its properties to determine if that is the one you want to use:

   gpuDevice

   parallel.gpu.CUDADevice handle
   Package: parallel.gpu

   Properties:
   Name: 'Tesla C1060'
   Index: 1
   ComputeCapability: '1.3'
   SupportsDouble: 1
   DriverVersion: 5
   ToolkitVersion: 5
   MaxThreadsPerBlock: 512
   MaxShmemPerBlock: 16384
   MaxThreadBlockSize: [512 512 64]
MaxGridSize: [65535 65535 1]
SIMDWidth: 32
TotalMemory: 4.2948e+09
FreeMemory: 4.2563e+09
MultiprocessorCount: 30
ClockRateKHz: 1296000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 0
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1

If this is the device you want to use, you can proceed.

3 To use another device, call `gpuDevice` with the index of the other device, and view its properties to verify that it is the one you want. For example, this step chooses and views the second device (indexing is 1-based):

`gpuDevice(2)`

**Note** If you select a device that does not have sufficient compute capability, you get a warning and you will not be able to use that device.
Run CUDA or PTX Code on GPU

In this section...

| “Overview” on page 9-21
| “Create a CUDAKernel Object” on page 9-22
| “Run a CUDAKernel” on page 9-28
| “Complete Kernel Workflow” on page 9-30

Overview

This topic explains how to create an executable kernel from CU or PTX (parallel thread execution) files, and run that kernel on a GPU from MATLAB. The kernel is represented in MATLAB by a CUDAKernel object, which can operate on MATLAB array or gpuArray variables.

The following steps describe the CUDAKernel general workflow:

1. Use compiled PTX code to create a CUDAKernel object, which contains the GPU executable code.
2. Set properties on the CUDAKernel object to control its execution on the GPU.
3. Call feval on the CUDAKernel with the required inputs, to run the kernel on the GPU.

MATLAB code that follows these steps might look something like this:

```matlab
% 1. Create CUDAKernel object.
k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu','entryPt1');

% 2. Set object properties.
k.GridSize = [8 1];
k.ThreadBlockSize = [16 1];

% 3. Call feval with defined inputs.
g1 = gpuArray(in1); % Input gpuArray.
g2 = gpuArray(in2); % Input gpuArray.
```
result = feval(k,g1,g2);

The following sections provide details of these commands and workflow steps.

Create a CUDAKernel Object

- “Compile a PTX File from a CU File” on page 9-22
- “Construct CUDAKernel Object with CU File Input” on page 9-22
- “Construct CUDAKernel Object with C Prototype Input” on page 9-23
- “Supported Data Types” on page 9-23
- “Argument Restrictions” on page 9-24
- “CUDAKernel Object Properties” on page 9-25
- “Specify Entry Points” on page 9-26
- “Specify Number of Threads” on page 9-27

Compile a PTX File from a CU File

If you have a CU file you want to execute on the GPU, you must first compile it to create a PTX file. One way to do this is with the nvcc compiler in the NVIDIA CUDA Toolkit. For example, if your CU file is called myfun.cu, you can create a compiled PTX file with the shell command:

nvcc -ptx myfun.cu

This generates the file named myfun.ptx.

Construct CUDAKernel Object with CU File Input

With a .cu file and a .ptx file you can create a CUDAKernel object in MATLAB that you can then use to evaluate the kernel:

k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu');

**Note** You cannot save or load CUDAKernel objects.
Construct CUDAKernel Object with C Prototype Input
If you do not have the CU file corresponding to your PTX file, you can specify the C prototype for your C kernel instead of the CU file. For example:

```matlab
k = parallel.gpu.CUDAKernel('myfun.ptx','float *, const float *, float');
```

Another use for C prototype input is when your source code uses an unrecognized renaming of a supported data type. (See the supported types below.) Suppose your kernel comprises the following code.

```c
typedef float ArgType;
__global__ void add3(ArgType * v1, const ArgType * v2)
{
 int idx = threadIdx.x;
 v1[idx] += v2[idx];
}
```

ArgType itself is not recognized as a supported data type, so the CU file that includes it cannot be directly used as input when creating the CUDAKernel object in MATLAB. However, the supported input types to the add3 kernel can be specified as C prototype input to the CUDAKernel constructor. For example:

```matlab
k = parallel.gpu.CUDAKernel('test.ptx','float *, const float *','add3');
```

Supported Data Types
The supported C/C++ standard data types are listed in the following table.

<table>
<thead>
<tr>
<th>Float Types</th>
<th>Integer Types</th>
<th>Boolean and Character Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>double, double2</td>
<td>short, unsigned short, short2, ushort2, int, unsigned int, int2, uint2, long, unsigned long, long2, ulong2</td>
<td></td>
</tr>
<tr>
<td>float, float2</td>
<td></td>
<td>bool, char, unsigned char, char2, uchar2</td>
</tr>
</tbody>
</table>
## Float Types

<table>
<thead>
<tr>
<th>Integer Types</th>
<th>Boolean and Character Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>long long, unsigned long long, long long2, ulonglong2</td>
<td>ptrdiff_t, size_t</td>
</tr>
</tbody>
</table>

Also, the following integer types are supported when you include the tmwtypes.h header file in your program.

### Integer Types

- int8_T, int16_T, int32_T, int64_T
- uint8_T, uint16_T, uint32_T, uint64_T

The header file is shipped as `matlabroot/extern/include/tmwtypes.h`. You include the file in your program with the line:

```
#include "tmwtypes.h"
```

## Argument Restrictions

All inputs can be scalars or pointers, and can be labeled `const`.

The C declaration of a kernel is always of the form:

```
__global__ void aKernel(inputs ...)
```

- The kernel must return nothing, and operate only on its input arguments (scalars or pointers).
- A kernel is unable to allocate any form of memory, so all outputs must be pre-allocated before the kernel is executed. Therefore, the sizes of all outputs must be known before you run the kernel.
- In principle, all pointers passed into the kernel that are not `const` could contain output data, since the many threads of the kernel could modify that data.
When translating the definition of a kernel in C into MATLAB:

- All scalar inputs in C (double, float, int, etc.) must be scalars in MATLAB, or scalar (i.e., single-element) gpuArray data. They are passed (after being cast into the requested type) directly to the kernel as scalars.

- All const pointer inputs in C (const double *, etc.) can be scalars or matrices in MATLAB. They are cast to the correct type, copied onto the device, and a pointer to the first element is passed to the kernel. No information about the original size is passed to the kernel. It is as though the kernel has directly received the result of mxGetData on an mxArray.

- All nonconstant pointer inputs in C are transferred to the kernel exactly as nonconstant pointers. However, because a nonconstant pointer could be changed by the kernel, this will be considered as an output from the kernel.

These rules have some implications. The most notable is that every output from a kernel must necessarily also be an input to the kernel, since the input allows the user to define the size of the output (which follows from being unable to allocate memory on the GPU).

**CUDA Kernel Object Properties**

When you create a kernel object without a terminating semicolon, or when you type the object variable at the command line, MATLAB displays the kernel object properties. For example:

```
k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu')
```

```
k =
parallel.gpu.CUDAKernel handle
Package: parallel.gpu

Properties:
 ThreadBlockSize: [1 1 1]
 MaxThreadsPerBlock: 512
 GridSize: [1 1 1]
 SharedMemorySize: 0
 EntryPoint: '_Z8theEntryPf'
 MaxNumLHSArguments: 1
 NumRHSArguments: 2
 ArgumentTypes: {'in single vector' 'inout single vector'}
```
The properties of a kernel object control some of its execution behavior. Use dot notation to alter those properties that can be changed.

For a description of the object properties, see the CUDAKernel object reference page. A typical reason for modifying the settable properties is to specify the number of threads, as described below.

**Specify Entry Points**

If your PTX file contains multiple entry points, you can identify the particular kernel in myfun.ptx that you want the kernel object \( k \) to refer to:

\[
k = \text{parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu','myKernel1')};
\]

A single PTX file can contain multiple entry points to different kernels. Each of these entry points has a unique name. These names are generally mangled (as in C++ mangling). However, when generated by nvcc the PTX name always contains the original function name from the CU file. For example, if the CU file defines the kernel function as

\[
\text{\_global\_ void simplestKernelEver( float * x, float val )}
\]

then the PTX code contains an entry that might be called

\[
\text{\_Z18simplestKernelEverPff.}
\]

When you have multiple entry points, specify the entry name for the particular kernel when calling CUDAKernel to generate your kernel.

**Note** The CUDAKernel function searches for your entry name in the PTX file, and matches on any substring occurrences. Therefore, you should not name any of your entries as substrings of any others.

You might not have control over the original entry names, in which case you must be aware of the unique mangled derived for each. For example, consider the following function template.

```
template <typename T>
\text{_global_ void add4(T * v1, const T * v2)}
```

int idx = threadIdx.x;
    v1[idx] += v2[idx];
}

When the template is expanded out for float and double, it results in two entry points, both of which contain the substring add4.

```
template __global__ void add4<float>(float *, const float *);
template __global__ void add4<double>(double *, const double *);
```

The PTX has corresponding entries:

```
_Z4add4IfEvPT_PK_S0_
_Z4add4IdEvPT_PK_S0_
```

Use entry point add4If for the float version, and add4Id for the double version.

```
k = parallel.gpu.CUDAKernel('test.ptx','double *', 'const double *', 'add4Id');
```

**Specify Number of Threads**

You specify the number of computational threads for your CUDAKernel by setting two of its object properties:

- **GridLayout** — A vector of three elements, the product of which determines the number of blocks.
- **ThreadBlockSize** — A vector of three elements, the product of which determines the number of threads per block. (Note that the product cannot exceed the value of the property **MaxThreadsPerBlock**.)

The default value for both of these properties is [1 1 1], but suppose you want to use 500 threads to run element-wise operations on vectors of 500 elements in parallel. A simple way to achieve this is to create your CUDAKernel and set its properties accordingly:

```
k = parallel.gpu.CUDAKernel('myfun.ptx', 'myfun.cu');
k.ThreadBlockSize = [500,1,1];
```
Generally, you set the grid and thread block sizes based on the sizes of your inputs. For information on thread hierarchy, and multiple-dimension grids and blocks, see the NVIDIA CUDA C Programming Guide.

**Run a CUDA Kernel**

- “Use Workspace Variables” on page 9-28
- “Use gpuArray Variables” on page 9-28
- “Determine Input and Output Correspondence” on page 9-29

Use the `feval` function to evaluate a CUDAKernel on the GPU. The following examples show how to execute a kernel using MATLAB workspace variables and gpuArray variables.

**Use Workspace Variables**

Assume that you have already written some kernels in a native language and want to use them in MATLAB to execute on the GPU. You have a kernel that does a convolution on two vectors; load and run it with two random input vectors:

```matlab
k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu');
result = feval(k,rand(100,1),rand(100,1));
```

Even if the inputs are constants or variables for MATLAB workspace data, the output is `gpuArray`.

**Use gpuArray Variables**

It might be more efficient to use `gpuArray` objects as input when running a kernel:

```matlab
k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu');

i1 = gpuArray(rand(100,1,'single'));
i2 = gpuArray(rand(100,1,'single'));
result1 = feval(k,i1,i2);
```
Because the output is a `gpuArray`, you can now perform other operations using this input or output data without further transfers between the MATLAB workspace and the GPU. When all your GPU computations are complete, gather your final result data into the MATLAB workspace:

```matlab
result2 = feval(k,i1,i2);
r1 = gather(result1);
r2 = gather(result2);
```

**Determine Input and Output Correspondence**

When calling `[out1, out2] = feval(kernel, in1, in2, in3)`, the inputs `in1`, `in2`, and `in3` correspond to each of the input arguments to the C function within your CU file. The outputs `out1` and `out2` store the values of the first and second non-const pointer input arguments to the C function after the C kernel has been executed.

For example, if the C kernel within a CU file has the following signature:

```c
void reallySimple(float * pInOut, float c)
```

the corresponding kernel object (`k`) in MATLAB has the following properties:

- `MaxNumLHSArguments: 1`
- `NumRHSArguments: 2`
- `ArgumentTypes: {'inout single vector' 'in single scalar'}`

Therefore, to use the kernel object from this code with `feval`, you need to provide `feval` two input arguments (in addition to the kernel object), and you can use one output argument:

```matlab
y = feval(k,x1,x2)
```

The input values `x1` and `x2` correspond to `pInOut` and `c` in the C function prototype. The output argument `y` corresponds to the value of `pInOut` in the C function prototype after the C kernel has executed.

The following is a slightly more complicated example that shows a combination of const and non-const pointers:
void moreComplicated( const float * pIn, float * pInOut1, float * pInOut2 )

The corresponding kernel object in MATLAB then has the properties:

MaxNumLHSArguments: 2
NumRHSArguments: 3
ArgumentTypes: {'in single vector' 'inout single vector' 'inout single vector'}

You can use `feval` on this code's kernel (k) with the syntax:

\[ [y1,y2] = \text{feval}(k,x1,x2,x3) \]

The three input arguments \( x1, x2, \) and \( x3 \), correspond to the three arguments that are passed into the C function. The output arguments \( y1 \) and \( y2 \), correspond to the values of \( pInOut1 \) and \( pInOut2 \) after the C kernel has executed.

**Complete Kernel Workflow**

- “Add Two Numbers” on page 9-30
- “Add Two Vectors” on page 9-31

**Add Two Numbers**

This example adds two doubles together in the GPU. You should have the NVIDIA CUDA Toolkit installed, and have CUDA-capable drivers for your device.

1. The CU code to do this is as follows.

   ```c
 __global__ void add1(double * pi, double c)
 {
 *pi += c;
 }
   ```

   The directive `__global__` indicates that this is an entry point to a kernel. The code uses a pointer to send out the result in \( \text{pi} \), which is both an input and an output. Put this code in a file called `test.cu` in the current directory.
2 Compile the CU code at the shell command line to generate a PTX file called test.ptx.

```bash
nvcc -ptx test.cu
```

3 Create the kernel in MATLAB. Currently this PTX file only has one entry so you do not need to specify it. If you were to put more kernels in, you would specify `add1` as the entry.

```matlab
k = parallel.gpu.CUDAKernel('test.ptx','test.cu');
```

4 Run the kernel with two numeric inputs. By default, a kernel runs on one thread.

```matlab
result = feval(k,2,3)
```

```matlab
result =
5
```

---

**Add Two Vectors**

This example extends the previous one to add two vectors together. For simplicity, assume that there are exactly the same number of threads as elements in the vectors and that there is only one thread block.

1 The CU code is slightly different from the last example. Both inputs are pointers, and one is constant because you are not changing it. Each thread will simply add the elements at its thread index. The thread index must work out which element this thread should add. (Getting these thread- and block-specific values is a very common pattern in CUDA programming.)

```c
__global__ void add2(double * v1, const double * v2)
{
 int idx = threadIdx.x;
 v1[idx] += v2[idx];
}
```

Save this code in the file `test.cu`.

2 Compile as before using `nvcc`. 

---

9-31
nvcc -ptx test.cu

3 If this code was put in the same CU file along with the code of the first example, you need to specify the entry point name this time to distinguish it.

k = parallel.gpu.CUDAKernel('test.ptx','test.cu','add2');

4 Before you run the kernel, set the number of threads correctly for the vectors you want to add.

N = 128;
k.ThreadBlockSize = N;
in1 = gpuArray.ones(N,1);
in2 = gpuArray.ones(N,1);
result = feval(k,in1,in2);
Write a MEX-File Containing CUDA Code

**Note** Creating MEX-functions for gpuArray data is supported only on 64-bit platforms (win64, glnxa64, maci64).

As with all MEX-files, a MEX-file containing CUDA code has a single entry point, known as `mexFunction`. The MEX-function contains the host-side code that interacts with gpuArray objects from MATLAB and launches the CUDA code. The CUDA code in the MEX-file must conform to the CUDA runtime API.

You should call the function `mxInitGPU` at the entry to your MEX-file. This ensures that the GPU device is properly initialized and known to MATLAB.

The interface you use to write a MEX-file for gpuArray objects is different from the MEX interface for standard MATLAB arrays.

You can see an example of a MEX-file containing CUDA code at:

`matlabroot/toolbox/distcomp/gpu/extern/src/mex/mexGPUExample.cu`

This file contains the following CUDA device function:

```c
void __global__ TimesTwo(double const * const A,
```
double * const B,
int const N)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        B[i] = 2.0 * A[i];
}

It contains the following lines to determine the array size and launch a grid of
the proper size:

N = (int)(mxGPUGetNumberOfElements(A));
blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
TimesTwo<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, N);

**Set Up for MEX-File Compilation**

- Your MEX source file that includes CUDA code must have a name with
  the extension .cu, not .c or .cpp.
- Before you compile your MEX-file, copy the provided mexopts file for your
  platform into the same folder as your MEX source file. You can find this
  file at:

  * `matlabroot/toolbox/distcomp/gpu/extern/src/mex/glnxa64/mexopts.sh` (Linux)
  * `matlabroot/toolbox/distcomp/gpu/extern/src/mex/maci64/mexopts.sh` (Macintosh)
  * `matlabroot\toolbox\distcomp\gpu\extern\src\mex\win64\mexopts.bat` (Windows)

- You must use the version of the NVIDIA compiler (nvcc) consistent with
  the ToolkitVersion property of the GPUDevice object.
- Before compiling, make sure either that the location of the nvcc folder is
  on your search path, or that the path to the location of nvcc is encoded in
  the environment variable `MW_NVCC_PATH`. You can set this variable using
  the MATLAB `setenv` command. For example:

  ```matlab
 setenv('MW_NVCC_PATH','/usr/local/CUDA/bin/nvcc')
  ```

**Compile a GPU MEX-File**

When you have set up the options file, use the `mex` command in MATLAB to
compile a MEX-file containing the CUDA code. You can compile the example
file using the command:
Run MEX-Functions Containing CUDA Code

mex mexGPUExample.cu

Run the Resulting MEX-Functions

The MEX-function in this example multiplies every element in the input array by 2 to get the values in the output array. To test it, start with a gpuArray in which every element is 1:

```matlab
x = gpuArray.ones(4,4);
y = mexGPUExample(x)
```

```
y =
 2 2 2 2
 2 2 2 2
 2 2 2 2
 2 2 2 2
```

Both the input and output arrays are gpuArray objects:

```matlab
disp(['class(x) = ',class(x),', class(y) = ',class(y)])
```

```
class(x) = gpuArray, class(y) = gpuArray
```

Comparison to a CUDA Kernel

Parallel Computing Toolbox also supports CUDAKernel objects that can be used to integrate CUDA code with MATLAB. Consider the following when choosing the MEX-file approach versus the CUDAKernel approach:

- MEX-files can interact with host-side libraries, such as the NVIDIA Performance Primitives (NPP) or CUFFT libraries, and can also contain calls from the host to functions in the CUDA runtime library.
- MEX-files can analyze the size of the input and allocate memory of a different size, or launch grids of a different size, from C or C++ code. In comparison, MATLAB code that calls CUDAKernel objects must pre-allocated output memory and determine the grid size.

Access Complex Data

Complex data on a GPU device is stored in interleaved complex format. That is, for a complex gpuArray A, the real and imaginary parts of element i are
stored in consecutive addresses. MATLAB uses CUDA built-in vector types to store complex data on the device (see the NVIDIA CUDA C Programming Guide).

Depending on the needs of your kernel, you can cast the pointer to complex data either as the real type or as the built-in vector type. For example, in MATLAB, suppose you create a matrix:

```matlab
a = complex(gpuArray.ones(4),gpuArray.ones(4));
```

If you pass a gpuArray to a MEX-function as the first argument (prhs[0]), then you can get a pointer to the complex data by using the calls:

```python
mxGPUArray const * A = mxGPUCreateFromMxArray(prhs[0]);
mwSize numel_complex = mxGPUGetNumberOfElements(A);
double2 * d_A = (double2 const *)(mxGPUGetDataReadOnly(A));
```

To treat the array as a real double-precision array of twice the length, you could do it this way:

```python
mxGPUArray const * A = mxGPUCreateFromMxArray(prhs[0]);
mwSize numel_real =2*mxGPUGetNumberOfElements(A);
double * d_A = (double const *)(mxGPUGetDataReadOnly(A));
```

Various functions exist to convert data between complex and real formats on the GPU. These operations require a copy to interleave the data. The function `mxGPUCopyComplexGPUArray` takes two real mxGPUArrays and interleaves their elements to produce a single complex mxGPUArray of the same length. The functions `mxGPUCopyReal` and `mxGPUCopyImag` each copy either the real or the imaginary elements into a new real mxGPUArray. (There is no equivalent of the `mxGetImagData` function for mxGPUArray objects.)

**Call Host-Side Libraries**

The code in the included MEX example file shows how to write your own code for the GPU. For example, if you want to call the NPP library, write the following line in the MEX-file:

```c
#include "npp.h"
```

and make the following change according to your platform:
• On Linux, change the setting of the variable `CXXLIBS` in `matlabroot/toolbox/distcomp/gpu/extern/src/mex/glxa64/mexopts.sh` to include the value `$TMW_ROOT/bin/$Arch/libnpp.so.5.0`.

• On Macintosh, change the setting of the variable `CXXLIBS` in `matlabroot/toolbox/distcomp/gpu/extern/src/mex/maci64/mexopts.sh` to include the flag `-lnpp`.

• On Windows, change the value of the `LINKFLAGS` variable in `mexopts.bat` to include `npp.lib`.
Measure and Improve GPU Performance

In this section...

“Basic Workflow for Improving Performance” on page 9-38
“Advanced Tools for Improving Performance” on page 9-39
“Best Practices for Improving Performance” on page 9-40
“Measure Performance on the GPU” on page 9-42
“Vectorize for Improved GPU Performance” on page 9-43

Basic Workflow for Improving Performance

The purpose of GPU computing in MATLAB is to speed up your applications. This topic discusses fundamental concepts and practices that can help you achieve better performance on the GPU, such as the configuration of the GPU hardware and best practices within your code. It discusses the trade-off between implementation difficulty and performance, and describes the criteria you might use to choose between using gpuArray functions, arrayfun, MEX-files, or CUDA kernels. Finally, it describes how to accurately measure performance on the GPU.

When converting MATLAB code to run on the GPU, it is best to start with MATLAB code that already performs well. While the GPU and CPU have different performance characteristics, the general guidelines for writing good MATLAB code also help you write good MATLAB code for the GPU. The first step is almost always to profile your CPU code. The lines of code that the profiler shows taking the most time on the CPU will likely be ones that you must concentrate on when you code for the GPU.

It is easiest to start converting your code using MATLAB built-in functions that support gpuArray data. These functions take gpuArray inputs, perform calculations on the GPU, and return gpuArray outputs. A list of the MATLAB functions that support gpuArray data is found in “Run Built-In Functions on a GPU” on page 9-9. In general these functions support the same arguments and data types as standard MATLAB functions that are calculated in the CPU. Any limitations in these overloaded functions for gpuArrays are described in their command-line help (e.g., help gpuArray/qr).
If all the functions that you want to use are supported on the GPU, running code on the GPU may be as simple as calling `gpuArray` to transfer input data to the GPU, and calling `gather` to retrieve the output data from the GPU when finished. In many cases, you might need to vectorize your code, replacing looped scalar operations with MATLAB matrix and vector operations. While vectorizing is generally a good practice on the CPU, it is usually critical for achieving high performance on the GPU. For more information, see “Vectorize for Improved GPU Performance” on page 9-43.

**Advanced Tools for Improving Performance**

It is possible that even after converting inputs to `gpuArray`s and vectorizing your code, there are operations in your algorithm that are either not built-in functions, or that are not fast enough to meet your application’s requirements. In such situations you have three main options: use `arrayfun` to precompile element-wise parts of your application, make use of GPU library functions, or write a custom CUDA kernel.

If you have a purely element-wise function, you can improve its performance by calling it with `arrayfun`. The `arrayfun` function on the GPU turns an element-wise MATLAB function into a custom CUDA kernel, thus reducing the overhead of performing the operation. Often, there is a subset of your application that can be used with `arrayfun` even if the entire application cannot be. The example Improve Performance of Element-wise MATLAB Functions on the GPU using ARRAYFUN shows the basic concepts of this approach; and the example Using ARRAYFUN for Monte-Carlo Simulations shows how this can be done in simulations for a finance application.

MATLAB provides an extensive library of GPU-enabled functions in Parallel Computing Toolbox, Image Processing Toolbox™, Signal Processing Toolbox™, and other products. However, there are many libraries of additional functions that do not have direct built-in analogs in MATLAB’s GPU support. Examples include the NVIDIA Performance Primitives library and the CURAND library, which are included in the CUDA toolkit that ships with MATLAB. If you need to call a function in one of these libraries, you can do so using the GPU MEX interface. This interface allows you to extract the pointers to the device data from MATLAB `gpuArray`s so that you can pass these pointers to GPU functions. You can convert the returned values into `gpuArray`s for return to MATLAB. For more information see “Run MEX-Functions Containing CUDA Code” on page 9-33.
Finally, you have the option of writing a custom CUDA kernel for the operation that you need. Such kernels can be directly integrated into MATLAB using the CUDAKernel object.

The example Illustrating Three Approaches to GPU Computing: The Mandelbrot Set shows how to implement a simple calculation using three of the approaches mentioned in this section. This example begins with MATLAB code that is easily converted to run on the GPU, rewrites the code to use arrayfun for element-wise operations, and finally shows how to integrate a custom CUDA kernel for the same operation.

Alternately, you can write a CUDA kernel as part of a MEX-file and call it using the CUDA Runtime API inside the MEX-file. Either of these approaches might let you work with low-level features of the GPU, such as shared memory and texture memory, that are not directly available in MATLAB code. For more details, see the example Accessing Advanced CUDA Features Using MEX.

**Best Practices for Improving Performance**

**Hardware Configuration**

In general you can achieve the best performance when your GPU is dedicated to computing. It is usually not practical to use the same GPU device for both computations and graphics, because of the amount of memory taken up for problems of reasonable size and the constant use of the device by the system for graphics. If possible, obtain a separate device for graphics. Details of configuring your device for compute or graphics depend on the operating system and driver version.

On Windows systems, a GPU device can be in one of two modes: Windows Display Driver Model (WDDM) or Tesla Compute Cluster (TCC) mode. For best performance, any devices used for computing should be in TCC mode. Consult NVIDIA documentation for more details.

NVIDIA’s highest-performance compute devices, the Tesla line, support error correcting codes (ECC) when reading and writing GPU memory. The purpose of ECC is to correct for occasional bit-errors that occur normally when reading or writing dynamic memory. One technique to improve performance is to turn
off ECC to increase the achievable memory bandwidth. While the hardware can be configured this way, MathWorks does not recommend this practice. The potential loss of accuracy due to silent errors can be more harmful than the performance benefit.

**MATLAB Coding Practices**

This topic describes general techniques that help you achieve better performance on the GPU. Some of these tips apply when writing MATLAB code for the CPU as well.

Data in MATLAB arrays is stored in column-major order. Therefore, it is beneficial to operate along the first or column dimension of your array. If one dimension of your data is significantly longer than others, you might achieve better performance if you make that the first dimension. Similarly, if you frequently operate along a particular dimension, it is usually best to have it as the first dimension. In some cases, if consecutive operations target different dimensions of an array, it might be beneficial to transpose or permute the array between these operations.

GPUs achieve high performance by calculating many results in parallel. Thus, matrix and higher-dimensional array operations typically perform much better than operations on vectors or scalars. You can achieve better performance by rewriting your loops to make use of higher-dimensional operations. The process of revising loop-based, scalar-oriented code to use MATLAB matrix and vector operations is called vectorization. For more details, see “Using Vectorization”.

By default, all operations in MATLAB are performed in double-precision floating-point arithmetic. However, most operations support a variety of data types, including integer and single-precision floating-point. Today’s GPUs and CPUs typically have much higher throughput when performing single-precision operations, and single-precision floating-point data occupies less memory. If your application’s accuracy requirements allow the use of single-precision floating-point, it can greatly improve the performance of your MATLAB code.

The GPU sits at the end of a data transfer mechanism known as the PCI bus. While this bus is an efficient, high-bandwidth way to transfer data from the PC host memory to various extension cards, it is still much slower than the
overall bandwidth to the global memory of the GPU device or of the CPU (for more details, see the example Measuring GPU Performance). In addition, transfers from the GPU device to MATLAB host memory cause MATLAB to wait for all pending operations on the device to complete before executing any other statements. This can significantly hurt the performance of your application. In general, you should limit the number of times you transfer data between the MATLAB workspace and the GPU. If you can transfer data to the GPU once at the start of your application, perform all the calculations you can on the GPU, and then transfer the results back into MATLAB at the end, that generally results in the best performance. Similarly, it helps to create data directly on the GPU, either using static methods of gpuArray (e.g., `gpuArray.zeros`) or the 'like' syntax of functions such as `zeros` (e.g., `zeros(N,'like',g)` for a `gpuArray g`).

**Measure Performance on the GPU**

The best way to measure performance on the GPU is to use `gputimeit`. This function takes as input a function handle with no input arguments, and returns the measured execution time of that function. It takes care of such benchmarking considerations as repeating the timed operation to get better resolution, executing the function before measurement to avoid initialization overhead, and subtracting out the overhead of the timing function. Also, `gputimeit` ensures that all operations on the GPU have completed before the final timing.

For example, consider measuring the time taken to compute the `lu` factorization of a random matrix A of size N. You can do this by defining a function that does the `lu` factorization and passing the function handle to `gputimeit`:

```matlab
A = gpuArray.rand(N);
fh = @(A) lu(A);
gputimeit(fh, 2); % 2nd arg indicates number of outputs
```

If you cannot use `gputimeit`, you can measure performance with `tic` and `toc`. However, to get accurate timing on the GPU, you must wait for operations to complete before calling `toc()`. There are two ways to do this. You can call `gather` on the final GPU output before calling `toc()`: this forces all computations to complete before the time measurement is taken. Alternately, you can use the `wait()` function, which takes a `gpuDevice` as its input.
For example, if you wanted to measure the time taken to compute the \( lu \) factorization of a matrix \( A \) using \texttt{tic}, \texttt{toc}, and \texttt{wait}, you can do it as follows:

```matlab
gd = gpuDevice();
tic();
[l,u] = lu(A);
wait(gd);
tLU = toc();
```

Treat with caution any results from the MATLAB profiler when GPU operations are involved. The profiler shows only the time spent by the CPU and does not indicate execution time on the GPU. The best way to tell what is happening when profiling GPU code is to place a \texttt{wait} call after each GPU operation or each section of interest in the code. Typically, the \texttt{wait} appears to take a significant amount of time. The time taken by the \texttt{wait} is actually the execution time of the GPU operations that occur prior to the wait in the program.

**Vectorize for Improved GPU Performance**

This example shows you how to improve performance by running a function on the GPU instead of the CPU, and by vectorizing the calculations.

Consider a function that performs fast convolution on the columns of a matrix. Fast convolution, which is a common operation in signal processing applications, transforms each column of data from the time domain to the frequency domain, multiplies it by the transform of a filter vector, transforms back to the time domain, and stores the result in an output matrix.

```matlab
function y = fastConvolution(data,filter)
[m,n] = size(data);
% Zero-pad filter to the column length of data, and transform
filter_f = fft(filter,m);

% Create an array of zeros of the same size and class as data
y = zeros(m,n,'like',data);

% Transform each column of data
for ix = 1:n
 af = fft(data(:,ix));
 y(:,ix) = ifft(af .* filter_f);
end
```
Execute this function in the CPU on data of a particular size, and measure the execution time using the MATLAB `timeit` function. The `timeit` function takes care of common benchmarking considerations, such as accounting for startup and overhead.

```matlab
a = complex(randn(4096,100),randn(4096,100)); % Data input
b = randn(16,1); % Filter input
c = fastConvolution(a,b); % Calculate output
time = timeit(@()fastConvolution(a,b)); % Measure CPU time
disp(['Execution time on CPU = ',num2str(time)]);
```

On a sample machine, this code displays the output:

```
Execution time on CPU = 0.019335
```

Now execute this function on the GPU. You can do this easily by changing the input data to be gpuArrays rather than normal MATLAB arrays. The 'like' syntax used when creating the output inside the function ensures that `y` will be a gpuArray if `data` is a gpuArray.

```matlab
ga = gpuArray(a); % Move data to GPU
gb = gpuArray(b); % Move filter to GPU
gc = fastConvolution(ga,gb); % Calculate on GPU
gtime = gputimeit(@()fastConvolution(ga,gb)); % Measure GPU time
gerr = max(max(abs(gather(gc)-c))); % Calculate error
disp(['Execution time on GPU = ',num2str(gtime)]);
disp(['Maximum absolute error = ',num2str(gerr)]);
```

On the same machine, this code displays the output:

```
Execution time on CPU = 0.019335
Execution time on GPU = 0.027235
Maximum absolute error = 1.1374e-14
```

Unfortunately, the GPU is slower than the CPU for this problem. The reason is that the `for`-loop is executing the FFT, multiplication, and inverse FFT operations on individual columns of length 4096. The best way to increase the performance is to vectorize the code, so that a single MATLAB function call performs more calculation. The FFT and IFFT operations are easy to
vectorize: \texttt{fft(A)} computes the FFT of each column of a matrix \texttt{A}. You can perform a multiply of the filter with every column in a matrix at once using the MATLAB binary scalar expansion function \texttt{bsxfun}. The vectorized function looks like this:

\begin{verbatim}
function y = fastConvolution_v2(data,filter)
    m = size(data,1);
    % Zero-pad filter to the length of data, and transform
    filter_f = fft(filter,m);
    % Transform each column of the input
    af = fft(data);
    % Multiply each column by filter and compute inverse transform
    y = ifft(bsxfun(@times,af,filter_f));
end
\end{verbatim}

Perform the same experiment using the vectorized function:

\begin{verbatim}
a = complex(randn(4096,100),randn(4096,100)); % Data input
b = randn(16,1); % Filter input
c = fastConvolution_v2(a,b); % Calculate output
time = timeit(@()fastConvolution_v2(a,b)); % Measure CPU time
disp(['Execution time on CPU = ',num2str(time)));
g = gpuArray(a); % Move data to GPU
gb = gpuArray(b); % Move filter to GPU
gc = fastConvolution_v2(ga,gb); % Calculate on GPU
gtime = gputimeit(@()fastConvolution_v2(ga,gb));% Measure GPU time
gerr = max(max(abs(gather(gc)-c)));
disp(['Execution time on GPU = ',num2str(gtime))];
disp(['Maximum absolute error = ',num2str(gerr)]);
\end{verbatim}

Execution time on CPU = 0.0093
Execution time on GPU = 0.0020537
Maximum absolute error = 1.1374e-14

In conclusion, vectorizing the code helps both the CPU and GPU versions to run faster. However, vectorization helps the GPU version much more than the CPU. The improved CPU version is nearly twice as fast as the original; the improved GPU version is 13 times faster than the original. The GPU code
went from being 40% slower than the CPU in the original version, to about five times faster in the revised version.
<table>
<thead>
<tr>
<th>Objects — Alphabetical List</th>
</tr>
</thead>
</table>

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

[Continued...]


**Purpose**
Access data of arrays distributed among workers in parallel pool

**Constructor**
codistributed, codistributed.build

**Description**
Data of distributed arrays that exist on the workers is accessible from the other workers as codistributed array objects.

Codistributed arrays on workers that you create inside `spmd` statements can be accessed via distributed arrays on the client.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classUnderlying</td>
<td>Class of elements within <code>gpuArray</code> or distributed array</td>
</tr>
<tr>
<td>codistributed.cell</td>
<td>Create codistributed cell array</td>
</tr>
<tr>
<td>codistributed.colon</td>
<td>Distributed colon operation</td>
</tr>
<tr>
<td>codistributed.eye</td>
<td>Create codistributed identity matrix</td>
</tr>
<tr>
<td>codistributed.false</td>
<td>Create codistributed false array</td>
</tr>
<tr>
<td>codistributed.Inf</td>
<td>Create codistributed array of <code>Inf</code> values</td>
</tr>
<tr>
<td>codistributed.NaN</td>
<td>Create codistributed array of Not-a-Number values</td>
</tr>
<tr>
<td>codistributed.ones</td>
<td>Create codistributed array of ones</td>
</tr>
<tr>
<td>codistributed.rand</td>
<td>Create codistributed array of uniformly distributed pseudo-random numbers</td>
</tr>
<tr>
<td>codistributed.randn</td>
<td>Create codistributed array of normally distributed random values</td>
</tr>
<tr>
<td>codistributed.spalloc</td>
<td>Allocate space for sparse codistributed matrix</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>codistributed.speye</td>
<td>Create codistributed sparse identity matrix</td>
</tr>
<tr>
<td>codistributed.sprand</td>
<td>Create codistributed sparse array of uniformly distributed pseudo-random values</td>
</tr>
<tr>
<td>codistributed.sprandn</td>
<td>Create codistributed sparse array of uniformly distributed pseudo-random values</td>
</tr>
<tr>
<td>codistributed.true</td>
<td>Create codistributed true array</td>
</tr>
<tr>
<td>codistributed.zeros</td>
<td>Create codistributed array of zeros</td>
</tr>
<tr>
<td>gather</td>
<td>Transfer distributed array data or gpuArray to local workspace</td>
</tr>
<tr>
<td>getCodistributor</td>
<td>Codistributor object for existing codistributed array</td>
</tr>
<tr>
<td>getLocalPart</td>
<td>Local portion of codistributed array</td>
</tr>
<tr>
<td>globalIndices</td>
<td>Global indices for local part of codistributed array</td>
</tr>
<tr>
<td>isaUnderlying</td>
<td>True if distributed array’s underlying elements are of specified class</td>
</tr>
<tr>
<td>iscodistributed</td>
<td>True for codistributed array</td>
</tr>
<tr>
<td>redistribute</td>
<td>Redistribute codistributed array with another distribution scheme</td>
</tr>
<tr>
<td>sparse</td>
<td>Create sparse distributed or codistributed matrix</td>
</tr>
</tbody>
</table>

Other overloaded methods for codistributed arrays are too numerous to list here. Most resemble and behave the same as built-in MATLAB functions. See “MATLAB Functions on Distributed and Codistributed...”
Arrays” on page 5-26. For the complete list of those supported, use the methods function on the codistributed class:

```
methods('codistributed')
```

Among these methods there are several for examining the characteristics of the array itself. Most behave like the MATLAB functions of the same name:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isreal</td>
<td>Indication if array data is real</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td>size</td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>
**Purpose**

1-D distribution scheme for codistributed array

**Constructor**

codistributor1d

**Description**

A codistributor1d object defines the 1-D distribution scheme for a codistributed array. The 1-D codistributor distributes arrays along a single specified dimension, the distribution dimension, in a noncyclic, partitioned manner.

For help on codistributor1d, including a list of links to individual help for its methods and properties, type

help codistributor1d

**Methods**

codistributor1d.defaultPartition

Default partition for codistributed array

globalIndices

Global indices for local part of codistributed array

isComplete

True if codistributor object is complete

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>Distributed dimension of codistributor1d object</td>
</tr>
<tr>
<td>Partition</td>
<td>Partition scheme of codistributor1d object</td>
</tr>
</tbody>
</table>
**Purpose**

2-D block-cyclic distribution scheme for codistributed array

**Constructor**

codistributor2dbc

**Description**

A codistributor2dbc object defines the 2-D block-cyclic distribution scheme for a codistributed array. The 2-D block-cyclic codistributor can only distribute two-dimensional matrices. It distributes matrices along two subscripts over a rectangular computational grid of labs in a blocked, cyclic manner. The parallel matrix computation software library called ScaLAPACK uses the 2-D block-cyclic codistributor.

For help on codistributor2dbc, including a list of links to individual help for its methods and properties, type

```
help codistributor2dbc
```

**Methods**

- `codistributor2dbc.defaultLabGrid`
  - Default computational grid for 2-D block-cyclic distributed arrays

- `globalIndices`
  - Global indices for local part of codistributed array

- `isComplete`
  - True if codistributor object is complete

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlockSize</td>
<td>Block size of codistributor2dbc object</td>
</tr>
<tr>
<td>LabGrid</td>
<td>Lab grid of codistributor2dbc object</td>
</tr>
<tr>
<td>Orientation</td>
<td>Orientation of codistributor2dbc object</td>
</tr>
</tbody>
</table>
### Purpose
Access nondistributed data on multiple workers from client

### Constructor
Composite

### Description
Variables that exist on the workers running an `spmd` statement are accessible on the client as a Composite object. A Composite resembles a cell array with one element for each worker. So for Composite C:

- `C{1}` represents value of C on worker1
- `C{2}` represents value of C on worker2
- etc.

`smdp` statements create Composites automatically, which you can access after the statement completes. You can also create a Composite explicitly with the `Composite` function.

### Methods
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exist</code></td>
<td>Check whether Composite is defined on workers</td>
</tr>
<tr>
<td><code>subsasgn</code></td>
<td>Subscripted assignment for Composite</td>
</tr>
<tr>
<td><code>subsref</code></td>
<td>Subscripted reference for Composite</td>
</tr>
</tbody>
</table>

Other methods of a Composite object behave similarly to these MATLAB array functions:

- `disp, display` Display Composite
- `end` Indicate last Composite index
- `isempty` Determine whether Composite is empty
- `length` Length of Composite
- `ndims` Number of Composite dimensions
<table>
<thead>
<tr>
<th>numel</th>
<th>Number of elements in Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>Composite dimensions</td>
</tr>
</tbody>
</table>
**Purpose**

Kernel executable on GPU

**Constructor**

parallel.gpu.CUDAKernel

**Description**

A CUDAKernel object represents a CUDA kernel, that can execute on a GPU. You create the kernel when you compile PTX or CU code, as described in “Run CUDA or PTX Code on GPU” on page 9-21.

**Methods**

- `existsOnGPU`
  - Determine if gpuArray or CUDAKernel is available on GPU
- `feval`
  - Evaluate kernel on GPU
- `setConstantMemory`
  - Set some constant memory on GPU

**Properties**

A CUDAKernel object has the following properties:

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ThreadBlockSize</strong></td>
<td>Size of block of threads on the kernel. This can be an integer vector of length 1, 2, or 3 (since thread blocks can be up to 3-dimensional). The product of the elements of <code>ThreadBlockSize</code> must not exceed the <code>MaxThreadsPerBlock</code> for this kernel, and no element of <code>ThreadBlockSize</code> can exceed the corresponding element of the <code>GPUDevice</code> property <code>MaxThreadBlockSize</code>.</td>
</tr>
<tr>
<td><strong>MaxThreadsPerBlock</strong></td>
<td>Maximum number of threads permissible in a single block for this CUDA kernel. The product of the elements of <code>ThreadBlockSize</code> must not exceed this value.</td>
</tr>
<tr>
<td><strong>GridSize</strong></td>
<td>Size of grid (effectively the number of thread blocks that will be launched independently by the GPU). This is an integer vector of length 3. None of the elements of this vector can exceed the corresponding element in the vector of the <code>MaxGridSize</code> property of the <code>GPUDevice</code> object.</td>
</tr>
</tbody>
</table>
CUDAKernel

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SharedMemorySize</td>
<td>The amount of dynamic shared memory (in bytes) that each thread block can use. Each thread block has an available shared memory region. The size of this region is limited in current cards to ~16 kB, and is shared with registers on the multiprocessors. As with all memory, this needs to be allocated before the kernel is launched. It is also common for the size of this shared memory region to be tied to the size of the thread block. Setting this value on the kernel ensures that each thread in a block can access this available shared memory region.</td>
</tr>
<tr>
<td>EntryPoint</td>
<td>(read-only) A string containing the actual entry point name in the PTX code that this kernel is going to call. An example might look like '_Z13returnPointerPKfPy'.</td>
</tr>
<tr>
<td>MaxNumLHSArguments</td>
<td>(read-only) The maximum number of left hand side arguments that this kernel supports. It cannot be greater than the number of right hand side arguments, and if any inputs are constant or scalar it will be less.</td>
</tr>
<tr>
<td>NumRHSArguments</td>
<td>(read-only) The required number of right hand side arguments needed to call this kernel. All inputs need to define either the scalar value of an input, the data for a vector input/output, or the size of an output argument.</td>
</tr>
<tr>
<td>ArgumentTypes</td>
<td>(read-only) Cell array of strings, the same length as NumRHSArguments. Each of the strings indicates what the expected MATLAB type for that input is (a numeric type such as uint8, single, or double followed by the word scalar or vector to indicate if we are passing by reference or value). In addition, if that argument is only an input to the kernel, it is prefixed by in; and if it is an input/output, it is prefixed by inout. This allows you to decide how to efficiently call the kernel with both MATLAB data and gpuArray, and to see which of the kernel inputs are being treated as outputs.</td>
</tr>
</tbody>
</table>

See Also: gpuArray, GPUDevice
## Purpose
Access data of distributed arrays from client

## Constructor
- `distributed`

## Description
Data of distributed arrays that exist on the workers are accessible on the client as a distributed array. A distributed array resembles a normal array in the way you access and manipulate its elements, but none of its data exists on the client.

Codistributed arrays that you create inside `spmd` statements are accessible via distributed arrays on the client. You can also create a distributed array explicitly on the client with the `distributed` function.

## Methods
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>classUnderlying</code></td>
<td>Class of elements within <code>gpuArray</code> or distributed array</td>
</tr>
<tr>
<td><code>distributed.cell</code></td>
<td>Create distributed cell array</td>
</tr>
<tr>
<td><code>distributed.eye</code></td>
<td>Create distributed identity matrix</td>
</tr>
<tr>
<td><code>distributed.false</code></td>
<td>Create distributed false array</td>
</tr>
<tr>
<td><code>distributed.Inf</code></td>
<td>Create distributed array of <code>Inf</code> values</td>
</tr>
<tr>
<td><code>distributed.NaN</code></td>
<td>Create distributed array of Not-a-Number values</td>
</tr>
<tr>
<td><code>distributed.ones</code></td>
<td>Create distributed array of ones</td>
</tr>
<tr>
<td><code>distributed.rand</code></td>
<td>Create distributed array of uniformly distributed pseudo-random numbers</td>
</tr>
<tr>
<td><code>distributed.randn</code></td>
<td>Create distributed array of normally distributed random values</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>distributed.spalloc</td>
<td>Allocate space for sparse distributed matrix</td>
</tr>
<tr>
<td>distributed.speye</td>
<td>Create distributed sparse identity matrix</td>
</tr>
<tr>
<td>distributed.sprand</td>
<td>Create distributed sparse array of uniformly distributed pseudo-random values</td>
</tr>
<tr>
<td>distributed.sprandn</td>
<td>Create distributed sparse array of normally distributed pseudo-random values</td>
</tr>
<tr>
<td>distributed.true</td>
<td>Create distributed true array</td>
</tr>
<tr>
<td>distributed.zeros</td>
<td>Create distributed array of zeros</td>
</tr>
<tr>
<td>gather</td>
<td>Transfer distributed array data or gpuArray to local workspace</td>
</tr>
<tr>
<td>isaUnderlying</td>
<td>True if distributed array’s underlying elements are of specified class</td>
</tr>
<tr>
<td>isdistributed</td>
<td>True for distributed array</td>
</tr>
<tr>
<td>sparse</td>
<td>Create sparse distributed or codistributed matrix</td>
</tr>
</tbody>
</table>

Other overloaded methods for distributed arrays are too numerous to list here. Most resemble and behave the same as built-in MATLAB functions. See “MATLAB Functions on Distributed and Codistributed Arrays” on page 5-26. For the complete list of those supported, use the methods function on the distributed class:

```matlab
methods('distributed')
```

Among these methods there are several for examining the characteristics of the array itself. Most behave like the MATLAB functions of the same name:
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isreal</td>
<td>Indication if array data is real</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td>size</td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>
Purpose

Array of data stored on GPU

Constructor

gpuArray converts an array in the MATLAB workspace into a gpuArray with data stored on the GPU device.

Also, the following static methods create gpuArray data:

<table>
<thead>
<tr>
<th>gpuArray.colon</th>
<th>gpuArray.ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpuArray.eye</td>
<td>gpuArray.rand</td>
</tr>
<tr>
<td>gpuArray.false</td>
<td>gpuArray.randni</td>
</tr>
<tr>
<td>gpuArray.inf</td>
<td>gpuArray.randn</td>
</tr>
<tr>
<td>gpuArray.linspace</td>
<td>gpuArray.true</td>
</tr>
<tr>
<td>gpuArray.logspace</td>
<td>gpuArray.zeros</td>
</tr>
<tr>
<td>gpuArray.nan</td>
<td></td>
</tr>
</tbody>
</table>

You can get help on any of these methods with the command

help gpuArray.methodname

where `methodname` is the name of the method. For example, to get help on rand, type

help gpuArray.rand

The following methods control the random number stream on the GPU:

- parallel.gpu.RandStream
- parallel.gpu.rng

Description

A gpuArray object represents an array of data stored on the GPU. You can use the data for direct calculations, or in CUDA kernels that execute on the GPU. You can return data to the MATLAB workspace with the `gather` function.
Methods

- **arrayfun**: Apply function to each element of array on GPU
- **bsxfun**: Binary singleton expansion function for gpuArray
- **classUnderlying**: Class of elements within gpuArray or distributed array
- **existsOnGPU**: Determine if gpuArray or CUDAKernel is available on GPU
- **gather**: Transfer distributed array data or gpuArray to local workspace
- **pagefun**: Apply function to each page of array on GPU

Other overloaded methods for a gpuArray object are too numerous to list here. Most resemble and behave the same as built-in MATLAB functions. See “Establish Arrays on a GPU” on page 9-3. For the complete list of those supported, use the `methods` function on the gpuArray class:

```matlab
methods('gpuArray')
```

Among the gpuArray methods there are several for examining the characteristics of a gpuArray object. Most behave like the MATLAB functions of the same name:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>existsOnGPU</code></td>
<td>Indication if array exists on the GPU and is accessible</td>
</tr>
<tr>
<td><code>isreal</code></td>
<td>Indication if array data is real</td>
</tr>
<tr>
<td><code>length</code></td>
<td>Length of vector or largest array dimension</td>
</tr>
<tr>
<td><code>ndims</code></td>
<td>Number of dimensions in the array</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Size of array dimensions</td>
</tr>
</tbody>
</table>
See Also

CUDAKernel, GPUDevice
### Purpose
Graphics processing unit (GPU)

### Constructor
gpuDevice

### Description
A GPUDevice object represents a graphic processing unit (GPU) in your computer. You can use the GPU to execute CUDA kernels or MATLAB code.

### Methods
The following convenience functions let you identify and select a GPU device:

- **gpuDevice**
  - Query or select GPU device

- **gpuDeviceCount**
  - Number of GPU devices present

- **reset**
  - Reset GPU device and clear its memory

- **wait**
  - Wait for job to change state or for GPU calculation to complete

Methods of the class include the following:

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.gpu.GPUDevice.isAvailable(idx)</td>
<td>True if the GPU specified by index idx is supported and capable of being selected. idx can be an integer or a vector of integers; the default index is the current device.</td>
</tr>
<tr>
<td>parallel.gpu.GPUDevice.getDevice(idx)</td>
<td>Returns a GPUDevice object without selecting it.</td>
</tr>
</tbody>
</table>

For the complete list, use the methods function on the GPUDevice class:

```matlab
methods('parallel.gpu.GPUDevice')
```

You can get help on any of the class methods with the command

```matlab
methods('parallel.gpu.GPUDevice')
```
help parallel.gpu.GPUDevice.methodname

where methodname is the name of the method. For example, to get help on isAvailable, type

help parallel.gpu.GPUDevice.isAvailable

Properties

A GPUDevice object has the following read-only properties:

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the CUDA device.</td>
</tr>
<tr>
<td>Index</td>
<td>Index by which you can select the device.</td>
</tr>
<tr>
<td>ComputeCapability</td>
<td>Computational capability of the CUDA device. Must meet required specification.</td>
</tr>
<tr>
<td>SupportsDouble</td>
<td>Indicates if this device can support double precision operations.</td>
</tr>
<tr>
<td>DriverVersion</td>
<td>The CUDA device driver version currently in use. Must meet required specification.</td>
</tr>
<tr>
<td>ToolkitVersion</td>
<td>Version of the CUDA toolkit used by the current release of MATLAB.</td>
</tr>
<tr>
<td>MaxThreadsPerBlock</td>
<td>Maximum supported number of threads per block during CUDAKernel execution.</td>
</tr>
<tr>
<td>MaxShmemPerBlock</td>
<td>Maximum supported amount of shared memory that can be used by a thread block during CUDAKernel execution.</td>
</tr>
<tr>
<td>MaxThreadBlockSize</td>
<td>Maximum size in each dimension for thread block. Each dimension of a thread block must not exceed these dimensions. Also, the product of the thread block size must not exceed MaxThreadsPerBlock.</td>
</tr>
<tr>
<td>MaxGridSize</td>
<td>Maximum size of grid of thread blocks.</td>
</tr>
<tr>
<td>SIMDWidth</td>
<td>Number of simultaneously executing threads.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TotalMemory</td>
<td>Total available memory (in bytes) on the device.</td>
</tr>
<tr>
<td>FreeMemory</td>
<td>Free memory (in bytes) on the device. This property is available only for the currently selected device, and has the value NaN for unselected devices.</td>
</tr>
<tr>
<td>MultiprocessorCount</td>
<td>The number of vector processors present on the device.</td>
</tr>
<tr>
<td>ClockRateKHz</td>
<td>Peak clock rate of the GPU in kHz.</td>
</tr>
<tr>
<td>ComputeMode</td>
<td>The compute mode of the GPU in kHz.</td>
</tr>
<tr>
<td>GPUOverlapsTransfers</td>
<td>Indicates if the device supports overlapped transfers.</td>
</tr>
<tr>
<td>KernelExecutionTimeout</td>
<td>Indicates if the device can abort long-running kernels. If true, the operating system places an upper bound on the time allowed for the CUDA kernel to execute, after which the CUDA driver times out the kernel and returns an error.</td>
</tr>
<tr>
<td>CanMapHostMemory</td>
<td>Indicates if the device supports mapping host memory into the CUDA address space.</td>
</tr>
</tbody>
</table>
GPUDevice

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceSupported</td>
<td>Indicates if toolbox can use this device. Not all devices are supported; for example, if their ComputeCapability is insufficient, the toolbox cannot use them.</td>
</tr>
<tr>
<td>DeviceSelected</td>
<td>Indicates if this is the currently selected device.</td>
</tr>
</tbody>
</table>

See Also: CUDAKernel, gpuArray
Purpose

Type for MATLAB gpuArray

Description

mxGPUArray is an opaque C language type that allows a MEX function access to the data in a MATLAB gpuArray. Using the mxGPU API, you can perform calculations on data from a MATLAB gpuArray, and return gpuArray results to MATLAB.

All MEX functions receive inputs and pass outputs as mxArrays. A gpuArray in MATLAB is a special kind of mxArray that represents an array of data stored on the GPU. In your MEX function, you use mxGPUArray objects to access data stored on the GPU: these objects correspond to MATLAB gpuArrays.

The mxGPU API contains functions that manipulate mxGPUArray objects. These functions allow you to extract mxGPUArrays from input mxArrays, to wrap output mxGPUArrays as mxArrays for return to MATLAB, to determine the characteristics of the data, and to get pointers to the underlying data. You can perform calculations on the data by passing the pointers to CUDA functions that you write or that are available in external libraries.

The basic structure of a GPU MEX function is:

1 Call mxInitGPU to initialize MathWorks GPU library.

2 Determine which mxArray inputs contain GPU data.

3 Create mxGPUArray objects from the input mxArray arguments, and get pointers to the input data on the device.

4 Create mxGPUArray objects to hold the outputs, and get the pointers to the output data on the device.

5 Call a CUDA function, passing it the device pointers.

6 Wrap the output mxGPUArray as an mxArray for return to MATLAB.

7 Destroy the mxGPUArray objects you created.
The header file that contains this type is `mxGPUArray.h`. You include it with the line:

```c
#include gpu/mxGPUArray.h
```

**See Also**

gpuArray, mxArray
### Purpose
Access cluster properties and behaviors

### Constructors
- `parcluster`
- `getCurrentCluster` (in the workspace of the MATLAB worker)

### Container Hierarchy
- Parent: None

### Description
A `parallel.Cluster` object provides access to a cluster, which controls the job queue, and distributes tasks to workers for execution.

### Types
The two categories of clusters are the MATLAB job scheduler (MJS) and common job scheduler (CJS). The MJS is available in the MATLAB Distributed Computer Server. The CJS clusters encompass all other types, including the local, generic, and third-party schedulers.

The following table describes the available types of cluster objects.

<table>
<thead>
<tr>
<th><strong>Cluster Type</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>parallel.cluster.MJS</code></td>
<td>Interact with MATLAB job scheduler (MJS) cluster on-premises</td>
</tr>
<tr>
<td><code>parallel.cluster.Local</code></td>
<td>Interact with CJS cluster running locally on client machine</td>
</tr>
<tr>
<td><code>parallel.cluster.HPCServer</code></td>
<td>Interact with CJS cluster running Windows Microsoft HPC Server</td>
</tr>
<tr>
<td><code>parallel.cluster.LSF</code></td>
<td>Interact with CJS cluster running Platform LSF</td>
</tr>
<tr>
<td><code>parallel.cluster.PBSPro</code></td>
<td>Interact with CJS cluster running Altair PBS Pro</td>
</tr>
<tr>
<td>Cluster Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>parallel.cluster.Torque</td>
<td>Interact with CJS cluster running TORQUE</td>
</tr>
<tr>
<td>parallel.cluster.Generic</td>
<td>Interact with CJS cluster using the generic interface</td>
</tr>
<tr>
<td>parallel.cluster.Mpiexec</td>
<td>Interact with CJS cluster using mpiexec from local host</td>
</tr>
</tbody>
</table>

### Methods

#### Common to All Cluster Types

- **batch**: Run MATLAB script or function on worker
- **createCommunicatingJob**: Create communicating job on cluster
- **createJob**: Create independent job on cluster
- **findJob**: Find job objects stored in cluster
- **isequal**: True if clusters have same property values
- **parpool**: Create parallel pool on cluster
- **saveAsProfile**: Save cluster properties to specified profile
- **saveProfile**: Save modified cluster properties to its current profile

#### MJS

- **changePassword**: Prompt user to change MJS password
- **demote**: Demote job in cluster queue
- **logout**: Log out of MJS cluster
parallel.Cluster

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pause</td>
<td>Pause MATLAB job scheduler queue</td>
</tr>
<tr>
<td>promote</td>
<td>Promote job in MJS cluster queue</td>
</tr>
<tr>
<td>resume</td>
<td>Resume processing queue in MATLAB job scheduler</td>
</tr>
</tbody>
</table>

**HPC Server, PBS Pro, LSF, TORQUE, and Local Clusters**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getDebugLog</td>
<td>Read output messages from job run in CJS cluster</td>
</tr>
</tbody>
</table>

**Generic**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getDebugLog</td>
<td>Read output messages from job run in CJS cluster</td>
</tr>
<tr>
<td>getJobClusterData</td>
<td>Get specific user data for job on generic cluster</td>
</tr>
<tr>
<td>getJobFolder</td>
<td>Folder on client where jobs are stored</td>
</tr>
<tr>
<td>getJobFolderOnCluster</td>
<td>Folder on cluster where jobs are stored</td>
</tr>
<tr>
<td>getLogLocation</td>
<td>Log location for job or task</td>
</tr>
<tr>
<td>setJobClusterData</td>
<td>Set specific user data for job on generic cluster</td>
</tr>
</tbody>
</table>

**Properties Common to all Cluster Types**

The following properties are common to all cluster object types.
### parallel.Cluster

**Property**	**Description**
ClusterMatlabRoot | Specifies path to MATLAB for workers to use
Host | Host name of the cluster head node
JobStorageLocation | Location where cluster stores job and task information
Jobs | List of jobs contained in this cluster
Modified | True if any properties in this cluster have been modified
NumWorkers | Number of workers available for this cluster
OperatingSystem | Operating system of nodes used by cluster
Profile | Profile used to build this cluster
Type | Type of this cluster
UserData | Data associated with cluster object within client session

**MJS**

MJS cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th><strong>Property</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>AllHostAddresses</td>
<td>IP addresses of the cluster host</td>
</tr>
<tr>
<td>BusyWorkers</td>
<td>Workers currently running tasks</td>
</tr>
<tr>
<td>IdleWorkers</td>
<td>Workers currently available for running tasks</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>HasSecureCommunication</td>
<td>True if cluster is using secure communication</td>
</tr>
<tr>
<td>Name</td>
<td>Name of this cluster</td>
</tr>
<tr>
<td>NumBusyWorkers</td>
<td>Number of workers currently running tasks</td>
</tr>
<tr>
<td>NumIdleWorkers</td>
<td>Number of workers available for running tasks</td>
</tr>
<tr>
<td>PromptForPassword</td>
<td>True if system should prompt for password when authenticating user</td>
</tr>
<tr>
<td>SecurityLevel</td>
<td>Degree of security applied to cluster and its jobs. For descriptions of security levels, see “Set MJS Cluster Security”.</td>
</tr>
<tr>
<td>State</td>
<td>Current state of cluster</td>
</tr>
<tr>
<td>Username</td>
<td>User accessing cluster</td>
</tr>
</tbody>
</table>

**Local**

Local cluster objects have no editable properties beyond the properties common to all clusters.

**HPC Server**

HPC Server cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterVersion</td>
<td>Version of Microsoft Windows HPC Server running on the cluster</td>
</tr>
<tr>
<td>JobDescriptionFile</td>
<td>Name of XML job description file to use when creating jobs</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>JobTemplate</td>
<td>Name of job template to use for jobs submitted to HPC Server</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
<tr>
<td>UseSOAJobSubmission</td>
<td>Allow service-oriented architecture (SOA) submission on HPC Server</td>
</tr>
</tbody>
</table>

**PBS Pro and TORQUE**

PBS Pro and TORQUE cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommunicatingJobWrapper</td>
<td>Script that cluster runs to start workers</td>
</tr>
<tr>
<td>RcpCommand</td>
<td>Command to copy files to and from client</td>
</tr>
<tr>
<td>ResourceTemplate</td>
<td>Define resources to request for communicating jobs</td>
</tr>
<tr>
<td>RshCommand</td>
<td>Remote execution command used on worker nodes during communicating job</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
<tr>
<td>SubmitArguments</td>
<td>Specify additional arguments to use when submitting jobs</td>
</tr>
</tbody>
</table>

**LSF**

LSF cluster objects have the following properties in addition to the common properties:
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterName</td>
<td>Name of Platform LSF cluster</td>
</tr>
<tr>
<td>CommunicatingJobWrapper</td>
<td>Script cluster runs to start workers</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
<tr>
<td>SubmitArguments</td>
<td>Specify additional arguments to use when submitting jobs</td>
</tr>
</tbody>
</table>

**Generic**

Generic cluster objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CancelJobFcn</td>
<td>Function to run when cancelling job</td>
</tr>
<tr>
<td>CancelTaskFcn</td>
<td>Function to run when cancelling task</td>
</tr>
<tr>
<td>CommunicatingSubmitFcn</td>
<td>Function to run when submitting communicating job</td>
</tr>
<tr>
<td>DeleteJobFcn</td>
<td>Function to run when deleting job</td>
</tr>
<tr>
<td>DeleteTaskFcn</td>
<td>Function to run when deleting task</td>
</tr>
<tr>
<td>GetJobStateFcn</td>
<td>Function to run when querying job state</td>
</tr>
<tr>
<td>IndependentSubmitFcn</td>
<td>Function to run when submitting independent job</td>
</tr>
<tr>
<td>HasSharedFilesystem</td>
<td>Specify whether client and cluster nodes share JobStorageLocation</td>
</tr>
</tbody>
</table>
**parallel.Cluster**

**Help**

For further help on cluster objects, including links to help for specific cluster types and object properties, type:

```
help parallel.Cluster
```

**See Also**

Purpose
Request function execution on parallel pool workers

Constructors
parfeval, parfevalOnAll

Container Hierarchy
Parent parallel.Pool.FevalQueue

Types
The following table describes the available types of future objects.

<table>
<thead>
<tr>
<th>Future Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.FevalFuture</td>
<td>Single parfeval future instance</td>
</tr>
<tr>
<td>parallel.FevalOnAllFuture</td>
<td>parfevalOnAllFuture future instance</td>
</tr>
</tbody>
</table>

Description
A parallel.FevalFuture represents a single instance of a function to be executed on a worker in a parallel pool. It is created when you call the parfeval function. To create multiple FevalFutures, call parfeval multiple times; for example, you can create a vector of FevalFutures in a for-loop.

An FevalOnAllFuture represents a function to be executed on every worker in a parallel pool. It is created when you call the parfevalOnAll function.

Methods
Future objects have the following methods. Note that some exist only for parallel.FevalFuture objects, not parallel.FevalOnAllFuture objects.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cancel</td>
<td>Cancel a queued or running future</td>
</tr>
<tr>
<td>fetchNext</td>
<td>Retrieve next available unread future outputs (FevalFuture only)</td>
</tr>
<tr>
<td>fetchOutputs</td>
<td>Retrieve all outputs of future</td>
</tr>
</tbody>
</table>
### Method Description

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isequal</td>
<td>True if futures have the same ID (FevalFuture only)</td>
</tr>
<tr>
<td>wait</td>
<td>Wait for futures to complete</td>
</tr>
</tbody>
</table>

### Properties

Future objects have the following properties. Note that some exist only for parallel.FevalFuture objects, not parallel.FevalOnAllFuture objects.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diary</td>
<td>Text produced by execution of function</td>
</tr>
<tr>
<td>Error</td>
<td>Error information</td>
</tr>
<tr>
<td>Function</td>
<td>Function to evaluate</td>
</tr>
<tr>
<td>ID</td>
<td>Numeric identifier for this future</td>
</tr>
<tr>
<td>InputArguments</td>
<td>Input arguments to function</td>
</tr>
<tr>
<td>NumOutputArguments</td>
<td>Number of arguments returned by function</td>
</tr>
<tr>
<td>OutputArguments</td>
<td>Output arguments from running function</td>
</tr>
<tr>
<td>Parent</td>
<td>FevalQueue containing this future</td>
</tr>
<tr>
<td>Read</td>
<td>Indication if outputs have been read by fetchNext or fetchOutputs (FevalFuture only)</td>
</tr>
<tr>
<td>State</td>
<td>Current state of future</td>
</tr>
</tbody>
</table>

### Help

To get further help on either type of parallel.Future object, including a list of links to help for its properties, type:

```
help parallel.FevalFuture
```
help parallel.FevalOnAllFuture

**See Also**

parallel.Pool
**Purpose**  
Access job properties and behaviors

**Constructors**  
createCommunicatingJob, createJob, findJob  
gGetCurrentJob (in the workspace of the MATLAB worker)

**Container Hierarchy**  
Parent       parallel.Cluster  
Children    parallel.Task

**Description**  
A parallel.Job object provides access to a job, which you create, define, and submit for execution.

**Types**  
The following table describes the available types of job objects. The job type is determined by the type of cluster, and whether the tasks must communicate with each other during execution.

<table>
<thead>
<tr>
<th>Job Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.job.MJSIndependentJob</td>
<td>Job of independent tasks on MJS cluster</td>
</tr>
<tr>
<td>parallel.job.MJSCommunicatingJob</td>
<td>Job of communicating tasks on MJS cluster</td>
</tr>
<tr>
<td>parallel.job.CJSIndependentJob</td>
<td>Job of independent tasks on CJS cluster</td>
</tr>
<tr>
<td>parallel.job.CJSCommunicatingJob</td>
<td>Job of communicating tasks on CJS cluster</td>
</tr>
</tbody>
</table>

**Methods**  
All job type objects have the same methods, described in the following table.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cancel</td>
<td>Cancel job or task</td>
</tr>
<tr>
<td>createTask</td>
<td>Create new task in job</td>
</tr>
</tbody>
</table>
### Properties

#### Common to all Job Types

The following properties are common to all job object types.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdditionalPaths</td>
<td>Folders to add to MATLAB search path of workers</td>
</tr>
<tr>
<td>AttachedFiles</td>
<td>Files and folders that are sent to workers</td>
</tr>
<tr>
<td>AutoAttachFiles</td>
<td>Specifies if dependent code files are automatically sent to workers</td>
</tr>
<tr>
<td>CreateTime</td>
<td>Time at which job was created</td>
</tr>
<tr>
<td>FinishTime</td>
<td>Time at which job finished running</td>
</tr>
</tbody>
</table>
### parallel.Job

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Job’s numeric identifier</td>
</tr>
<tr>
<td>JobData</td>
<td>Data made available to all workers for job’s tasks</td>
</tr>
<tr>
<td>Name</td>
<td>Name of job</td>
</tr>
<tr>
<td>Parent</td>
<td>Cluster object containing this job</td>
</tr>
<tr>
<td>StartTime</td>
<td>Time at which job started running</td>
</tr>
<tr>
<td>State</td>
<td>State of job: 'pending', 'queued', 'running', 'finished', or 'failed'</td>
</tr>
<tr>
<td>SubmitTime</td>
<td>Time at which job was submitted to queue</td>
</tr>
<tr>
<td>Tag</td>
<td>Label associated with job</td>
</tr>
<tr>
<td>Tasks</td>
<td>Array of task objects contained in job</td>
</tr>
<tr>
<td>Type</td>
<td>Job type: 'independent', 'pool', or 'spmd'</td>
</tr>
<tr>
<td>UserData</td>
<td>Data associated with job object</td>
</tr>
<tr>
<td>Username</td>
<td>Name of user who owns job</td>
</tr>
</tbody>
</table>

### MJS Jobs

MJS independent job objects and MJS communicating job objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthorizedUsers</td>
<td>Users authorized to access job</td>
</tr>
<tr>
<td>FinishedFcn</td>
<td>Callback function executed on client when this job finishes</td>
</tr>
<tr>
<td><strong>Property</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NumWorkersRange</td>
<td>Minimum and maximum limits for number of workers to run job</td>
</tr>
<tr>
<td>QueuedFcn</td>
<td>Callback function executed on client when this job is submitted to queue</td>
</tr>
<tr>
<td>RestartWorker</td>
<td>True if workers are restarted before evaluating first task for this job</td>
</tr>
<tr>
<td>RunningFcn</td>
<td>Callback function executed on client when this job starts running</td>
</tr>
<tr>
<td>Timeout</td>
<td>Time limit, in seconds, to complete job</td>
</tr>
</tbody>
</table>

**CJS Jobs**

CJS independent job objects do not have any properties beyond the properties common to all job types.

CJS communicating job objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th><strong>Property</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>NumWorkersRange</td>
<td>Minimum and maximum limits for number of workers to run job</td>
</tr>
</tbody>
</table>

**Help**

To get further help on a particular type of parallel.Job object, including a list of links to help for its properties, type `help parallel.job.<job-type>`. For example:

```
help parallel.job.MJSIndependentJob
```

**See Also**

`parallel.Cluster`, `parallel.Task`, `parallel.Worker`
parallel.Pool

**Purpose**
Access parallel pool

**Constructors**
parpool, gcp

**Description**
A parallel.Pool object provides access to a parallel pool running on a cluster.

**Methods**
A parallel pool object has the following methods.

- `addAttachedFiles`
  Attach files or folders to parallel pool
- `delete (Pool)`
  Shut down parallel pool
- `listAutoAttachedFiles`
  List of files automatically attached to job, task, or parallel pool
- `parfeval`
  Execute function asynchronously on parallel pool worker
- `parfevalOnAll`
  Execute function asynchronously on all workers in parallel pool
- `updateAttachedFiles`
  Update attach files or folders on parallel pool

**Properties**
A parallel pool object has the following properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AttachedFiles</td>
<td>Files and folders that are sent to workers</td>
</tr>
<tr>
<td>Cluster</td>
<td>Cluster on which the parallel pool is running</td>
</tr>
<tr>
<td>Connected</td>
<td>False if the parallel pool has shut down</td>
</tr>
</tbody>
</table>
### Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FevalQueue</td>
<td>Queue of FevalFutures to run on the parallel pool</td>
</tr>
<tr>
<td>IdleTimeout</td>
<td>Time duration in minutes before idle parallel pool will shut down</td>
</tr>
<tr>
<td>NumWorkers</td>
<td>Number of workers comprising the parallel pool</td>
</tr>
<tr>
<td>SpmdEnabled</td>
<td>Indication if pool can run SPMD code</td>
</tr>
</tbody>
</table>

### Help

To get further help on parallel.Pool objects, including a list of links to help for its properties, type:

```
help parallel.Pool
```

### See Also

`parallel.Cluster`, `parallel.Future`
**parallel.Task**

**Purpose**
Access task properties and behaviors

**Constructors**
createTask, findTask

getCurrentTask (in the workspace of the MATLAB worker)

**Container Hierarchy**

Parent: parallel.Job
Children: none

**Description**
A parallel.Task object provides access to a task, which executes on a worker as part of a job.

**Types**
The following table describes the available types of task objects, determined by the type of cluster.

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.task.MJSTask</td>
<td>Task on MJS cluster</td>
</tr>
<tr>
<td>parallel.task.CJSTask</td>
<td>Task on CJS cluster</td>
</tr>
</tbody>
</table>

**Methods**
All task type objects have the same methods, described in the following table.

- **cancel**: Cancel job or task
- **delete**: Remove job or task object from cluster and memory
- **listAutoAttachedFiles**: List of files automatically attached to job, task, or parallel pool
- **wait**: Wait for job to change state or for GPU calculation to complete
Properties

Common to All Task Types

The following properties are common to all task object types.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaptureDiary</td>
<td>Specify whether to return diary output</td>
</tr>
<tr>
<td>CreateTime</td>
<td>When task was created</td>
</tr>
<tr>
<td>Diary</td>
<td>Text produced by execution of task object’s function</td>
</tr>
<tr>
<td>Error</td>
<td>Task error information</td>
</tr>
<tr>
<td>ErrorIdentifier</td>
<td>Task error identifier</td>
</tr>
<tr>
<td>ErrorMessage</td>
<td>Message from task error</td>
</tr>
<tr>
<td>FinishTime</td>
<td>When task finished running</td>
</tr>
<tr>
<td>Function</td>
<td>Function called when evaluating task</td>
</tr>
<tr>
<td>ID</td>
<td>Task’s numeric identifier</td>
</tr>
<tr>
<td>InputArguments</td>
<td>Input arguments to task function</td>
</tr>
<tr>
<td>Name</td>
<td>Name of this task</td>
</tr>
<tr>
<td>NumOutputArguments</td>
<td>Number of arguments returned by task function</td>
</tr>
<tr>
<td>OutputArguments</td>
<td>Output arguments from running task function on worker</td>
</tr>
<tr>
<td>Parent</td>
<td>Job object containing this task</td>
</tr>
<tr>
<td>StartTime</td>
<td>When task started running</td>
</tr>
<tr>
<td>State</td>
<td>Current state of task</td>
</tr>
</tbody>
</table>
parallel.Task

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserData</td>
<td>Data associated with this task object</td>
</tr>
<tr>
<td>Worker</td>
<td>Object representing worker that ran this task</td>
</tr>
</tbody>
</table>

**MJS Tasks**

MJS task objects have the following properties in addition to the common properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FailureInfo</td>
<td>Information returned from failed task</td>
</tr>
<tr>
<td>FinishedFcn</td>
<td>Callback executed in client when task finishes</td>
</tr>
<tr>
<td>MaximumRetries</td>
<td>Maximum number of times to rerun failed task</td>
</tr>
<tr>
<td>NumFailures</td>
<td>Number of times tasked failed</td>
</tr>
<tr>
<td>RunningFcn</td>
<td>Callback executed in client when task starts running</td>
</tr>
<tr>
<td>Timeout</td>
<td>Time limit, in seconds, to complete task</td>
</tr>
</tbody>
</table>

**CJS Tasks**

CJS task objects have no properties beyond the properties common to all clusters.

**Help**

To get further help on either type of parallel.Task object, including a list of links to help for its properties, type:

```matlab
help parallel.task.MJSTask
help parallel.task.CJSTask
```
See Also

**parallel.Worker**

**Purpose**
Access worker that ran task

**Constructors**
`getCurrentWorker` in the workspace of the MATLAB worker.

In the client workspace, a parallel.Worker object is available from the `Worker` property of a parallel.Task object.

**Container Hierarchy**
- **Parent**: parallel.cluster.MJS
- **Children**: none

**Description**
A parallel.Worker object provides access to the MATLAB worker session that executed a task as part of a job.

**Types**

<table>
<thead>
<tr>
<th>Worker Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel.cluster.MJSWorker</td>
<td>MATLAB worker on MJS cluster</td>
</tr>
<tr>
<td>parallel.cluster.CJSWorker</td>
<td>MATLAB worker on CJS cluster</td>
</tr>
</tbody>
</table>

**Methods**
There are no methods for a parallel.Worker object other than generic methods for any objects in the workspace, such as `delete`, etc.

**Properties**

**MJS Worker**
The following table describes the properties of an MJS worker.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>AllHostAddresses</code></td>
<td>IP addresses of worker host</td>
</tr>
<tr>
<td><code>Name</code></td>
<td>Name of worker, set when worker session started</td>
</tr>
<tr>
<td><code>Parent</code></td>
<td>MJS cluster to which this worker belongs</td>
</tr>
</tbody>
</table>
CJS Worker

The following table describes the properties of an CJS worker.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComputerType</td>
<td>Type of computer on which worker ran; the value of the MATLAB function <code>computer</code> executed on the worker</td>
</tr>
<tr>
<td>Host</td>
<td>Host name where worker executed task</td>
</tr>
<tr>
<td>ProcessId</td>
<td>Process identifier for worker</td>
</tr>
</tbody>
</table>

Help

To get further help on either type of parallel.Worker object, including a list of links to help for its properties, type:

```
help parallel.cluster.MJSWorker
help parallel.cluster.CJSWorker
```

See Also

RemoteClusterAccess

**Purpose**
Connect to schedulers when client utilities are not available locally

**Constructor**
\[
\begin{align*}
r & = \text{parallel.cluster.RemoteClusterAccess}(& \text{username}) \\
r & = \text{parallel.cluster.RemoteClusterAccess}(& \text{username}, & P_1, & V_1, \\
& \ldots, & P_n, & V_n)
\end{align*}
\]

**Description**
parallel.cluster.RemoteClusterAccess allows you to establish a connection and run commands on a remote host. This class is intended for use with the generic scheduler interface when using remote submission of jobs or on nonshared file systems.

\[
r = \text{parallel.cluster.RemoteClusterAccess}(& \text{username})
\]
uses the supplied username when connecting to the remote host. You will be prompted for a password when establishing the connection.

\[
r = \text{parallel.cluster.RemoteClusterAccess}(& \text{username}, & P_1, & V_1, \\
& \ldots, & P_n, & V_n)
\]
allows additional parameter-value pairs that modify the behavior of the connection. The accepted parameters are:

- `'IdentityFilename'` — A string containing the full path to the identity file to use when connecting to a remote host. If `'IdentityFilename'` is not specified, you are prompted for a password when establishing the connection.

- `'IdentityFileHasPassphrase'` — A boolean indicating whether or not the identity file requires a passphrase. If true, you are prompted for a password when establishing a connection. If an identity file is not supplied, this property is ignored. This value is `false` by default.

For more information and detailed examples, see the integration scripts provided in `matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared`. For example, the scripts for PBS in a nonshared file system are in `matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared`
Methods

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connect</td>
<td>RemoteClusterAccess.connect(clusterHost) establishes a connection to the specified host using the user credential options supplied in the constructor. File mirroring is not supported.</td>
</tr>
<tr>
<td></td>
<td>RemoteClusterAccess.connect(clusterHost, remoteDataLocation) establishes a connection to the specified host using the user credential options supplied in the constructor. remoteDataLocation identifies a folder on the clusterHost that is used for file mirroring. The user credentials supplied in the constructor must have write access to this folder.</td>
</tr>
<tr>
<td>disconnect</td>
<td>RemoteClusterAccess.disconnect() disconnects the existing remote connection. The connect method must have already been called.</td>
</tr>
<tr>
<td>doLastMirrorForJob</td>
<td>RemoteClusterAccess.doLastMirrorForJob(job) performs a final copy of changed files from the remote DataLocation to the local DataLocation for the supplied job. Any running mirrors for the job also stop and the job files are removed from the remote DataLocation. The startMirrorForJob or resumeMirrorForJob method must have already been called.</td>
</tr>
<tr>
<td>getRemoteJobLocation</td>
<td>RemoteClusterAccess.getRemoteJobLocation(jobID, remoteOS) returns the full path to the remote job location for the supplied jobID. Valid values for remoteOS are 'pc' and 'unix'.</td>
</tr>
<tr>
<td>isJobUsingConnection</td>
<td>RemoteClusterAccess.isJobUsingConnection(jobID) returns true if the job is currently being mirrored.</td>
</tr>
<tr>
<td>Method Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>resumeMirrorForJob</td>
<td>RemoteClusterAccess.resumeMirrorForJob(job) resumes the mirroring of files from the remote DataLocation to the local DataLocation for the supplied job. This is similar to the startMirrorForJob method, but does not first copy the files from the local DataLocation to the remote DataLocation. The connect method must have already been called. This is useful if the original client MATLAB session has ended, and you are accessing the same files from a new client session.</td>
</tr>
<tr>
<td>runCommand</td>
<td>[status, result] = RemoteClusterAccess.runCommand(command) runs the supplied command on the remote host and returns the resulting status and standard output. The connect method must have already been called.</td>
</tr>
<tr>
<td>startMirrorForJob</td>
<td>RemoteClusterAccess.startMirrorForJob(job) copies all the job files from the local DataLocation to the remote DataLocation, and starts mirroring files so that any changes to the files in the remote DataLocation are copied back to the local DataLocation. The connect method must have already been called.</td>
</tr>
<tr>
<td>stopMirrorForJob</td>
<td>RemoteClusterAccess.stopMirrorForJob(job) immediately stops the mirroring of files from the remote DataLocation to the local DataLocation for the specified job. The startMirrorForJob or resumeMirrorForJob method must have already been called. This cancels the running mirror and removes the files for the job from the remote location. This is similar to doLastMirrorForJob, except that stopMirrorForJob makes no attempt to ensure that the local job files are up to date. For normal mirror stoppage, use doLastMirrorForJob.</td>
</tr>
</tbody>
</table>
**Properties**

A RemoteClusterAccess object has the following read-only properties. Their values are set when you construct the object or call its connect method.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>Name of the remote host to access.</td>
</tr>
<tr>
<td>IdentityFileHasPassphrase</td>
<td>Indicates if the identity file requires a passphrase.</td>
</tr>
<tr>
<td>IdentityFilename</td>
<td>Full path to the identity file used when connecting to the remote host.</td>
</tr>
<tr>
<td>IsConnected</td>
<td>Indicates if there is an active connection to the remote host.</td>
</tr>
<tr>
<td>IsFileMirrorSupported</td>
<td>Indicates if file mirroring is supported for this connection. This is false if no remote DataLocation is supplied to the connect() method.</td>
</tr>
<tr>
<td>JobStorageLocation</td>
<td>Location on the remote host for files that are being mirrored.</td>
</tr>
<tr>
<td>UseIdentityFile</td>
<td>Indicates if an identity file should be used when connecting to the remote host.</td>
</tr>
<tr>
<td>Username</td>
<td>User name for connecting to the remote host.</td>
</tr>
</tbody>
</table>

**Examples**

Mirror files from the remote data location. Assume the object job represents a job on your generic scheduler.

```plaintext
remoteConnection = parallel.cluster.RemoteClusterAccess('testname');
remoteConnection.connect('headnode1','/tmp/filemirror');
remoteConnection.startMirrorForJob(job);
submit(job)
% Wait for the job to finish
job.wait();

% Ensure that all the local files are up to date, and remove the % remote files
remoteConnection.doLastMirrorForJob(job);
```
% Get the output arguments for the job
results = job.fetchOutputs()

For more detailed examples, see the integration scripts provided in `matlabroot/toolbox/distcomp/examples/integration`. For example, the scripts for PBS in a nonshared file system are in `matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared`
Functions — Alphabetical List
**Purpose**
Attach files or folders to parallel pool

**Syntax**
addAttachedFiles(poolobj,files)

**Description**
addAttachedFiles(poolobj,files) adds extra attached files to the specified parallel pool. These files are transferred to each worker and are treated exactly the same as if they had been set at the time the pool was opened — specified by the parallel profile or the 'AttachedFiles' argument of the parpool function.

**Input Arguments**
- **poolobj** - Pool to which files attach
  pool object
  Pool to which files attach, specified as a pool object.
  Example: poolobj = gcp;

- **files** - Files or folders to attach
  string | cell array
  Files or folders to attach, specified as a string or cell array of strings. Each string can specify either an absolute or relative path to a file or folder.
  Example: {'myFun1.m','myFun2.m'}

**Examples**
Add Attached Files to Current Parallel Pool
Add two attached files to the current parallel pool.

poolobj = gcp;
addAttachedFiles(poolobj,{'myFun1.m','myFun2.m'})

**See Also**
gcp | listAutoAttachedFiles | parpool | updateAttachedFiles

**Concepts**
- “Create and Modify Cluster Profiles” on page 6-18
arrayfun

Purpose
Apply function to each element of array on GPU

Syntax
A = arrayfun(FUN, B)
A = arrayfun(FUN, B, C, ...)
[A, B, ...] = arrayfun(FUN, C, ...)

Description
This method of a gpuArray object is very similar in behavior to the MATLAB function arrayfun, except that the actual evaluation of the function happens on the GPU, not on the CPU. Thus, any required data not already on the GPU is moved to GPU memory, the MATLAB function passed in for evaluation is compiled for the GPU, and then executed on the GPU. All the output arguments return as gpuArray objects, whose data you can retrieve with the gather method.

A = arrayfun(FUN, B) applies the function specified by FUN to each element of the gpuArray B, and returns the results in gpuArray A. A is the same size as B, and A(i,j,...) is equal to FUN(B(i,j,...)). FUN is a function handle to a function that takes one input argument and returns a scalar value. FUN must return values of the same class each time it is called. The input data must be an array of one of the following types: numeric, logical, or gpuArray. The order in which arrayfun computes elements of A is not specified and should not be relied on.

FUN must be a handle to a function that is written in the MATLAB language (i.e., not a mex function).

The subset of the MATLAB language that is currently supported for execution on the GPU can be found in “Run Element-wise MATLAB Code on a GPU” on page 9-13.

A = arrayfun(FUN, B, C, ...) evaluates FUN using elements of arrays B, C, ... as input arguments with singleton expansion enabled. The resulting gpuArray element A(i,j,...) is equal to FUN(B(i,j,...), C(i,j,...), ...). The inputs B, C, ... must all have the same size or be scalar. Any scalar inputs are scalar expanded before being input to the function FUN.

One or more of the inputs B, C, ... must be a gpuArray; any of the others can reside in CPU memory. Each array that is held in CPU memory
is converted to a gpuArray before calling the function on the GPU. If you plan to use an array in several different arrayfun calls, it is more efficient to convert that array to a gpuArray before making the series of calls to arrayfun.

\[ [A, B, ...] = \text{arrayfun}(\text{FUN}, C, \ldots) \]

where FUN is a function handle to a function that returns multiple outputs, returns gpuArrays A, B, ..., each corresponding to one of the output arguments of FUN. arrayfun calls FUN each time with as many outputs as there are in the call to arrayfun. FUN can return output arguments having different classes, but the class of each output must be the same each time FUN is called. This means that all elements of A must be the same class; B can be a different class from A, but all elements of B must be of the same class, etc.

Although the MATLAB arrayfun function allows you to specify optional parameter name/value pairs, the gpuArray arrayfun method does not support these options.
**Tips**
The first time you call `arrayfun` to run a particular function on the GPU, there is some overhead time to set up the function for GPU execution. Subsequent calls of `arrayfun` with the same function can run significantly faster.

Nonsingleton dimensions of input arrays must match each other. In other words, the corresponding dimensions of B, C, etc., must be equal to each other, or equal to one. Whenever a dimension of an input arrays is singleton (equal to 1), `arrayfun` uses singleton expansion to virtually replicate the array along that dimension to match the largest of the other arrays in that dimension. In the case where a dimension of an input array is singleton and the corresponding dimension in another argument array is zero, `arrayfun` virtually diminishes the singleton dimension to 0.

The size of the output array A is such that each dimension is the largest of the input arrays in that dimension for nonzero size, or zero otherwise. Notice in the following code how dimensions of size 1 are scaled up or down to match the size of the corresponding dimension in the other argument:

```matlab
R1 = gpuArray.rand(2,5,4);
R2 = gpuArray.rand(2,1,4,3);
R3 = gpuArray.rand(1,5,4,3);
R = arrayfun(@(x,y,z)(x+y.*z),R1,R2,R3);
size(R)
```

```
2 5 4 3
```

```matlab
R1 = gpuArray.rand(2,2,0,4);
R2 = gpuArray.rand(2,1,1,4);
R = arrayfun(@plus,R1,R2);
size(R)
```

```
2 2 0 4
```
arrayfun

Examples

If you define a MATLAB function as follows:

```matlab
function [o1, o2] = aGpuFunction(a, b, c)
o1 = a + b;
o2 = o1 .* c + 2;
```

You can evaluate this on the GPU.

```matlab
s1 = gpuArray(rand(400));
s2 = gpuArray(rand(400));
s3 = gpuArray(rand(400));
[o1, o2] = arrayfun(@aGpuFunction, s1, s2, s3);
whos
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1</td>
<td>400x400</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>o2</td>
<td>400x400</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>s1</td>
<td>400x400</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>s2</td>
<td>400x400</td>
<td>108</td>
<td>gpuArray</td>
</tr>
<tr>
<td>s3</td>
<td>400x400</td>
<td>108</td>
<td>gpuArray</td>
</tr>
</tbody>
</table>

Use `gather` to retrieve the data from the GPU to the MATLAB workspace.

```matlab
d = gather(o2);
```

See Also

`bsxfun` | `gather` | `gpuArray` | `pagefun`
Purpose
Run MATLAB script or function on worker

Syntax
- \( j = \text{batch('aScript')} \)
- \( j = \text{batch(myCluster,'aScript')} \)
- \( j = \text{batch(fcn,N,\{x1, ..., xn\})} \)
- \( j = \text{batch(myCluster,fcn,N,\{x1,...,xn\})} \)
- \( j = \text{batch(...,'p1',v1,'p2',v2,...)} \)

Arguments
- \( j \) The batch job object.
- \( 'aScript' \) The script of MATLAB code to be evaluated by the worker.
- \( \text{myCluster} \) Cluster object representing cluster compute resources.
- \( \text{fcn} \) Function handle or string of function name to be evaluated by the worker.
- \( N \) The number of output arguments from the evaluated function.
- \( \{x1, ..., xn\} \) Cell array of input arguments to the function.
- \( p1, p2 \) Object properties or other arguments to control job behavior.
- \( v1, v2 \) Initial values for corresponding object properties or arguments.

Description
\( j = \text{batch('aScript')} \) runs the script code of the file \texttt{aScript.m} on a worker in the cluster specified by the default cluster profile. (Note: Do not include the \texttt{.m} file extension with the script name argument.) The function returns \( j \), a handle to the job object that runs the script. The script file \texttt{aScript.m} is copied to the worker.
j = batch(myCluster,'aScript') is identical to batch('aScript') except that the script runs on a worker according to the cluster identified by the cluster object myCluster.

j = batch(fcn,N,{x1, ..., xn}) runs the function specified by a function handle or function name, fcn, on a worker in the cluster identified by the default cluster profile. The function returns j, a handle to the job object that runs the function. The function is evaluated with the given arguments, x1,...,xn, returning N output arguments. The function file for fcn is copied to the worker. (Do not include the .m file extension with the function name argument.)

j = batch(myCluster,fcn,N,{x1,...,xn}) is identical to batch(fcn,N,{x1,...,xn}) except that the function runs on a worker in the cluster identified by the cluster object myCluster.

j = batch(...,'p1',v1,'p2',v2,...) allows additional parameter-value pairs that modify the behavior of the job. These parameters support batch for functions and scripts, unless otherwise indicated. The supported parameters are:

- 'Workspace' — A 1-by-1 struct to define the workspace on the worker just before the script is called. The field names of the struct define the names of the variables, and the field values are assigned to the workspace variables. By default this parameter has a field for every variable in the current workspace where batch is executed. This parameter supports only the running of scripts.

- 'Profile' — A single string that is the name of a cluster profile to use to identify the cluster. If this option is omitted, the default profile is used to identify the cluster and is applied to the job and task properties.

- 'AdditionalPaths' — A string or cell array of strings that defines paths to be added to the MATLAB search path of the workers before the script or function executes. The default search path might not be the same on the workers as it is on the client; the path difference could be the result of different current working folders (pwd), platforms, or network file system access. The 'AdditionalPaths'
property can assure that workers are looking in the correct locations for necessary code files, data files, model files, etc.

- 'AttachedFiles' — A string or cell array of strings. Each string in the list identifies either a file or a folder, which gets transferred to the worker.

- 'CurrentFolder' — A string indicating in what folder the script executes. There is no guarantee that this folder exists on the worker. The default value for this property is the cwd of MATLAB when the batch command is executed. If the string for this argument is '.', there is no change in folder before batch execution.

- 'CaptureDiary' — A logical flag to indicate that the toolbox should collect the diary from the function call. See the diary function for information about the collected data. The default is true.

- 'Pool' — An integer specifying the number of workers to make into a parallel pool for the job in addition to the worker running the batch job itself. The script or function uses this pool for execution of statements such as parfor and spmd that are inside the batch code. Because the pool requires N workers in addition to the worker running the batch, there must be at least N+1 workers available on the cluster. You do not have to have a parallel pool already running to execute batch; and the new pool that batch creates is not related to a pool you might already have open. (See “Run a Batch Parallel Loop” on page 1-9.) The default value is 0, which causes the script or function to run on only the single worker without a parallel pool.

**Tips**

To see your batch job’s status or to track its progress, use the Job Monitor, as described in “Job Monitor” on page 6-26. You can also use the Job Monitor to retrieve a job object for a batch job that was created in a different session, or for a batch job that was created without returning a job object from the batch call.

As a matter of good programming practice, when you no longer need it, you should delete the job created by the batch function so that it does not continue to consume cluster storage resources.
Examples

Run a batch script on a worker, without using a parallel pool:

```matlab
j = batch('script1');
```

Run a batch script that requires two additional files for execution:

```matlab
j = batch('myScript','AttachedFiles',{'mscr1.m','mscr2.m'});
wait(j);
load(j);
```

Run a batch pool job on a remote cluster, using eight workers for the parallel pool in addition to the worker running the batch script. Capture the diary, and load the results of the job into the workspace. This job requires a total of nine workers:

```matlab
j = batch('script1','Pool',8,'CaptureDiary',true);
wait(j); % Wait for the job to finish
diary(j) % Display the diary
load(j) % Load job workspace data into client workspace
```

Run a batch pool job on a local worker, which employs two other local workers for the pool. Note, this requires a total of three workers in addition to the client, all on the local machine:

```matlab
j = batch('script1','Profile','local','Pool',2);
```

Clean up a batch job’s data after you are finished with it:

```matlab
delete(j)
```

Run a batch function on a cluster that generates a 10-by-10 random matrix:

```matlab
c = parcluster();
j = batch(c,@rand,1,{10,10});
wait(j) % Wait for the job to finish
diary(j) % Display the diary
r = fetchOutputs(j); % Get results into a cell array
r{1} % Display result

See Also
diary | findJob | load | wait
bsxfun

Purpose
Binary singleton expansion function for gpuArray

Syntax
C = bsxfun(FUN, A, B)

Description
This method of a gpuArray object is similar in behavior to the MATLAB function bsxfun, except that the actual evaluation of the function happens on the GPU, not on the CPU.

C = bsxfun(FUN, A, B) applies the element-by-element binary operation specified by the function handle FUN to arrays A and B, with singleton expansion enabled. If A or B is a gpuArray, bsxfun moves all other required data to the GPU and performs its calculation on the GPU. The output array C is a gpuArray, whose data you can retrieve with gather.

The corresponding dimensions of A and B must be equal to each other, or equal to one. Whenever a dimension of A or B is singleton (equal to 1), bsxfun virtually replicates the array along that dimension to match the other array. In the case where a dimension of A or B is singleton and the corresponding dimension in the other array is zero, bsxfun virtually diminishes the singleton dimension to 0.

The size of the output array C is such that each dimension is the larger of the two input arrays in that dimension for nonzero size, or zero otherwise. Notice in the following code how dimensions of size 1 are scaled up or down to match the size of the corresponding dimension in the other argument:

R1 = gpuArray.rand(2,5,4);
R2 = gpuArray.rand(2,1,4,3);
R = bsxfun(@plus,R1,R2);
size(R)
 2 5 4 3

R1 = gpuArray.rand(2,2,0,4);
R2 = gpuArray.rand(2,1,1,4);
R = bsxfun(@plus,R1,R2);
size(R)
Examples
Subtract the column means from each element of a matrix:

\[
\begin{align*}
A &= \text{gpuArray.rand}(8); \\
M &= \text{bsxfun}(@\text{minus}, A, \text{mean}(A));
\end{align*}
\]

See Also
arrayfun | gather | gpuArray | pagefun
cancel

Purpose
Cancel job or task

Syntax
cancel(t)
cancel(j)

Arguments
t Pending or running task to cancel.
j Pending, running, or queued job to cancel.

Description
cancel(t) stops the task object, t, that is currently in the pending or running state. The task’s State property is set to finished, and no output arguments are returned. An error message stating that the task was canceled is placed in the task object’s ErrorMessage property, and the worker session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running. The job’s State property is set to finished, and a cancel is executed on all tasks in the job that are not in the finished state. A job object that has been canceled cannot be started again.

If the job is running from an MJS, any worker sessions that are evaluating tasks belonging to the job object are restarted.

If the specified job or task is already in the finished state, no action is taken.

Examples
Cancel a task. Note afterward the task’s State, ErrorIdentifier, and ErrorMessage properties.

c = parcluster();
job1 = createJob(c);
t = createTask(job1, @rand, 1, {3,3});
cancel(t)

Task with properties:

11-14
ID: 1
State: finished
Function: @rand
Parent: Job 1
StartTime:
Running Duration: 0 days 0h 0m 0s

ErrorIdentifier: parallel:task:UserCancellation
ErrorMessage: The task was cancelled by user "mylogin" on machine "myhost.mydomain.com".

See Also: delete | submit
cancel (FevalFuture)

Purpose
Cancel queued or running future

Syntax
cancel(F)

Description
cancel(F) stops the queued and running futures contained in F. No action is taken for finished futures. Each element of F that is not already in state 'finished' has its State property set to 'finished', and its Error property is set to contain an MException indicating that execution was cancelled.

Examples
Run a function several times until a satisfactory result is found. In this case, the array of futures F is cancelled when a result is greater than 0.95.

```plaintext
N = 100;
for idx = N:-1:1
    F(idx) = parfeval(@rand,1); % Create a random scalar
end
result = NaN; % No result yet.
for idx = 1:N
    [~, thisResult] = fetchNext(F);
    if thisResult > 0.95
        result = thisResult;
        % Have all the results needed, so break
        break;
    end
end
% With required result, cancel any remaining futures
cancel(F)
result
```

See Also
parfeval | parfevalOnAll | fetchNext | fetchOutputs
Purpose

Prompt user to change MJS password

Syntax

changePassword(mjs)
changePassword(mjs,username)

Arguments

mjs MJS cluster object on which password is changing
username User whose password is changed

Description

changePassword(mjs) prompts the user to change the password for the current user on the MATLAB job scheduler represented by object mjs. The user’s current password must be entered as well as the new password.

changePassword(mjs,username) prompts the admin user to change the password for the specified user. The admin user’s password must be entered as well as the user’s new password. This enables the admin user to reset a password if the user has forgotten it.

For more information on MJS security, see “Set MJS Cluster Security”.

See Also

logout
Class of elements within gpuArray or distributed array

Syntax

C = classUnderlying(D)

Description

C = classUnderlying(D) returns the name of the class of the elements contained within the gpuArray or distributed array D. Similar to the MATLAB class function, this returns a string indicating the class of the data.

Examples

Examine the class of the elements of a gpuArray.

N = 1000;
G8 = gpuArray.ones(1,N,'uint8');
G1 = gpuArray.nan(1,N,'single');
c8 = classUnderlying(G8)
c1 = classUnderlying(G1)

c8 =

uint8

c1 =

single

Examine the class of the elements of a distributed array.

N = 1000;
D8 = distributed.ones(1,N,'uint8');
D1 = distributed.nan(1,N,'single');
c8 = classUnderlying(D8)
c1 = classUnderlying(D1)

c8 =

uint8
c1 =

single

See Also
codistributed | distributed | gpuArray
Purpose
Remove objects from MATLAB workspace

Syntax
clear obj

Arguments
obj An object or an array of objects.

Description
clear obj removes obj from the MATLAB workspace.

Tips
If obj references an object in the cluster, it is cleared from the workspace, but it remains in the cluster. You can restore obj to the workspace with the parcluster, findJob, or findTask function; or with the Jobs or Tasks property.

Examples
This example creates two job objects on the job manager jm. The variables for these job objects in the MATLAB workspace are job1 and job2. job1 is copied to a new variable, job1copy; then job1 and job2 are cleared from the MATLAB workspace. The job objects are then restored to the workspace from the job object’s Jobs property as j1 and j2, and the first job in the job manager is shown to be identical to job1copy, while the second job is not.

```matlab
cl = parcluster();
delete(cl.Jobs) % Assure there are no jobs
job1 = createJob(cl);
job2 = createJob(cl);
job1copy = job1;
clear job1 job2;
j1 = cl.Jobs(1);
j2 = cl.Jobs(2);
isequal (job1copy, j1)
anse =
        1
isequal (job1copy, j2)
anse =
        0
```
See Also
createJob | createTask | findJob | findTask | parcluster
codistributed

Purpose
Create codistributed array from replicated local data

Syntax

```plaintext
C = codistributed(X)
C = codistributed(X, codist)
C = codistributed(X, codist, lab)
C = codistributed(C1, codist)
```

Description

- `C = codistributed(X)` distributes a replicated `X` using the default codistributor. `X` must be a replicated array, that is, it must have the same value on all workers. `size(C)` is the same as `size(X)`.

- `C = codistributed(X, codist)` distributes a replicated `X` using the codistributor `codist`. `X` must be a replicated array, namely it must have the same value on all workers. `size(C)` is the same as `size(X)`. For information on constructing codistributor objects, see the reference pages for `codistributor1d` and `codistributor2dbc`.

- `C = codistributed(X, codist, lab)` distributes a local array `X` that resides on the worker identified by `lab`, using the codistributor `codist`. Local array `X` must be defined on all workers, but only the value from `lab` is used to construct `C`. `size(C)` is the same as `size(X)`.

- `C = codistributed(C1, codist)` where the input array `C1` is already a codistributed array, redistributes the array `C1` according to the distribution scheme defined by codistributor `codist`. This is the same as calling `C = redistribute(C1, codist)`. If the specified distribution scheme is that same as that already in effect, then the result is the same as the input.

Tips

`gather` essentially performs the inverse of `codistributed`.

Examples

Create a 1000-by-1000 codistributed array `C1` using the default distribution scheme.

```plaintext
spmd
    N = 1000;
    X = magic(N); % Replicated on every lab
    C1 = codistributed(X); % Partitioned among the workers
```

11-22
Create a 1000-by-1000 codistributed array C2, distributed by rows (over its first dimension).

```matlab
spmd
    N = 1000;
    X = magic(N);
    C2 = codistributed(X, codistributor1d(1));
end
```

See Also

codistributor1d | codistributor2dbc | gather | globalIndices |
getLocalPart | redistribute | size | subsasgn | subsref
Purpose
Create codistributed array from distributed data

Syntax

```
D = codistributed.build(L, codist)
D = codistributed.build(L, codist, 'noCommunication')
```

Description

D = codistributed.build(L, codist) forms a codistributed array with `getLocalPart(D) = L`. The codistributed array D is created as if you had combined all copies of the local array L. The distribution scheme is specified by codist. Global error checking ensures that the local parts conform with the specified distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

D = codistributed.build(L, codist, 'noCommunication') builds a codistributed array, without performing any interworker communications for error checking.

codist must be complete, which you can check by calling `codist.isComplete()`. The requirements on the size and structure of the local part L depend on the class of codist. For the 1-D and 2-D block-cyclic codistributors, L must have the same class and sparsity on all workers. Furthermore, the local part L must represent the region described by the `globalIndices` method on codist.

Examples

Create a codistributed array of size 1001-by-1001 such that column ii contains the value ii.

```
spmd
    N = 1001;
    globalSize = [N, N];
    % Distribute the matrix over the second dimension (columns),
    % and let the codistributor derive the partition from the
    % global size.
    codistr = codistributor1d(2, ...
                                codistributor1d.unsetPartition, globalSize)

    % On 4 workers, codistr.Partition equals [251, 250, 250, 250].
    % Allocate storage for the local part.
```
localSize = [N, codistr.Partition(labindex)];
L = zeros(localSize);

% Use globalIndices to map the indices of the columns
% of the local part into the global column indices.
globalInd = codistr.globalIndices(2);
% On 4 workers, globalInd has the values:
% 1:251 on worker 1
% 252:501 on worker 2
% 502:751 on worker 3
% 752:1001 on worker 4

% Initialize the columns of the local part to
% the correct value.
for localCol = 1:length(globalInd)
 globalCol = globalInd(localCol);
 L(:, localCol) = globalCol;
end
D = codistributed.build(L, codistr)
end

See Also
codistributor1d | codistributor2dbc | gather | globalIndices |
getLocalPart | redistribute | size | subsasgn | subsref
Purpose

Create codistributed cell array

Syntax

\[
C = \text{codistributed.cell}(n)
\]

\[
C = \text{codistributed.cell}(m, n, p, \ldots)
\]

\[
C = \text{codistributed.cell}([m, n, p, \ldots])
\]

\[
C = \text{cell}(n, \text{codist})
\]

\[
C = \text{cell}(m, n, p, \ldots, \text{codist})
\]

\[
C = \text{cell}([m, n, p, \ldots], \text{codist})
\]

Description

\(C = \text{codistributed.cell}(n)\) creates an \(n\)-by-\(n\) codistributed array of underlying class cell, distributing along columns.

\(C = \text{codistributed.cell}(m, n, p, \ldots)\) or \(C = \text{codistributed.cell}([m, n, p, \ldots])\) creates an \(m\)-by-\(n\)-by-\(p\)-by-... codistributed array of underlying class cell, using a default scheme of distributing along the last nonsingleton dimension.

Optional arguments to \text{codistributed.cell} must be specified after the required arguments, and in the following order:

- **\text{codist}** — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}.

- **'noCommunication'** — Specifies that no communication is to be performed when constructing the array, skipping some error checking steps.

\(C = \text{cell}(n, \text{codist})\) is the same as \(C = \text{codistributed.cell}(n, \text{codist})\). You can also use the 'noCommunication' object with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```
spmd
    C = cell(8, codistributor1d());
end
```
C = cell(m, n, p, ..., codist) and C = cell([m, n, p, ...], codist) are the same as C = codistributed.cell(m, n, p, ...) and C = codistributed.cell([m, n, p, ...]), respectively. You can also use the optional 'noCommunication' argument with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    C = codistributed.cell(1000);
end
```

creates a 1000-by-1000 distributed cell array C, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of C.

```matlab
spmd(4)
    codist = codistributor1d(2, 1:numlabs);
    C = cell(10, 10, codist);
end
```

creates a 10-by-10 codistributed cell array C, distributed by its columns. Each worker contains a 10-by-labindex local piece of C.

See Also
cell | distributed.cell
Purpose

Distributed colon operation

Syntax

codistributed.colon(a,d,b)
codistributed.colon(a,b)

Description

codistributed.colon(a,d,b) partitions the vector a:d:b into numlabs contiguous subvectors of equal, or nearly equal length, and creates a codistributed array whose local portion on each worker is the labindex-th subvector.

codistributed.colon(a,b) uses d = 1.

Optional arguments to codistributed.colon must be specified after the required arguments, and in the following order:

- codist — A codistributor object specifying the distribution scheme of the resulting vector. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

- 'noCommunication' — Specifies that no communication is to be performed when constructing the vector, skipping some error checking steps.

Examples

Partition the vector 1:10 into four subvectors among four workers.

spmd(4); C = codistributed.colon(1,10), end
Lab 1:
 This worker stores C(1:3).
 LocalPart: [1 2 3]
 Codistributor: [1x1 codistributor1d]
Lab 2:
 This worker stores C(4:6).
 LocalPart: [4 5 6]
 Codistributor: [1x1 codistributor1d]
Lab 3:
 This worker stores C(7:8).
 LocalPart: [7 8]
Codistributor: [1x1 codistributor1d]
Lab 4:
This worker stores C(9:10).
 LocalPart: [9 10]
 Codistributor: [1x1 codistributor1d]

See Also colon | codistributor1d | codistributor2dbc | for
Purpose
Create codistributed identity matrix

Syntax
C = codistributed.eye(n)
C = codistributed.eye(m, n)
C = codistributed.eye([m, n])
C = eye(n, codist)
C = eye(m, n, codist)
C = eye([m, n], codist)

Description
C = codistributed.eye(n) creates an n-by-n codistributed identity matrix of underlying class double.

C = codistributed.eye(m, n) or C = codistributed.eye([m, n]) creates an m-by-n codistributed matrix of underlying class double with ones on the diagonal and zeros elsewhere.

Optional arguments to codistributed.eye must be specified after the required arguments, and in the following order:

- **classname** — Specifies the class of the codistributed array C. Valid choices are the same as for the regular eye function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

- **codist** — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

- **'noCommunication'** — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

C = eye(n, codist) is the same as C = codistributed.eye(n, codist). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

spmd
C = eye(8, codistributor1d());
end

C = eye(m, n, codist) and C = eye([m, n], codist) are the same as C = codistributed.eye(m, n) and C = codistributed.eye([m, n]), respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    C = codistributed.eye(1000);
end
```

creates a 1000-by-1000 codistributed double array C, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of C.

```matlab
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    C = eye(10, 10, 'uint16', codist);
end
```

creates a 10-by-10 codistributed uint16 array D, distributed by its columns. Each worker contains a 10-by-labindex local piece of D.

See Also

eye | codistributed.ones | codistributed.speye | codistributed.zeros | distributed.eye
codistributed.false

Purpose
Create codistributed false array

Syntax

- \(F = \text{codistributed.false}(n) \)
- \(F = \text{codistributed.false}(m, n, \ldots) \)
- \(F = \text{codistributed.false}([m, n, \ldots]) \)
- \(F = \text{false}(n, \text{codist}) \)
- \(F = \text{false}(m, n, \ldots, \text{codist}) \)
- \(F = \text{false}([m, n, \ldots], \text{codist}) \)

Description

- \(F = \text{codistributed.false}(n) \) creates an \(n \)-by-\(n \) codistributed array of logical zeros.
- \(F = \text{codistributed.false}(m, n, \ldots) \) or \(F = \text{codistributed.false}([m, n, \ldots]) \) creates an \(m \)-by-\(n \)-by-\(\ldots \) codistributed array of logical zeros.

Optional arguments to \text{codistributed.false} must be specified after the required arguments, and in the following order:

- \text{codist} — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}.

- \text{'noCommunication'} — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\(F = \text{false}(n, \text{codist}) \) is the same as \(F = \text{codistributed.false}(n, \text{codist}) \). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```plaintext
spmd
    F = false(8, codistributor1d());
end
```
\[F = \text{false}(m, n, ..., \text{codist}) \] and \[F = \text{false}([m, n, ...], \text{codist}) \] are the same as \[F = \text{codistributed.false}(m, n, ...) \] and \[F = \text{codistributed.false}([m, n, ...]) \], respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    F = false(1000, codistributor());
end
```

creates a 1000-by-1000 codistributed false array \(F \), distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of \(F \).

```matlab
spmd
    codist = codistributor('1d', 2, 1:numlabs);
    F = false(10, 10, codist);
end
```

creates a 10-by-10 codistributed false array \(F \), distributed by its columns. Each worker contains a 10-by-labindex local piece of \(F \).

See Also

false | codistributed.true | distributed.false
Purpose
Create codistributed array of Inf values

Syntax

\[
C = \text{codistributed} \cdot \text{Inf}(n)
\]

\[
C = \text{codistributed} \cdot \text{Inf}(m, n, \ldots)
\]

\[
C = \text{codistributed} \cdot \text{Inf}([m, n, \ldots])
\]

\[
C = \text{Inf}(n, \text{codist})
\]

\[
C = \text{Inf}(m, n, \ldots, \text{codist})
\]

\[
C = \text{Inf}([m, n, \ldots], \text{codist})
\]

Description

\[C = \text{codistributed} \cdot \text{Inf}(n)\] creates an \(n\)-by-\(n\) codistributed matrix of Inf values.

\[C = \text{codistributed} \cdot \text{Inf}(m, n, \ldots)\] or \[C = \text{codistributed} \cdot \text{Inf}([m, n, \ldots])\] creates an \(m\)-by-\(n\)-by-... codistributed array of Inf values.

Optional arguments to `codistributed.Inf` must be specified after the required arguments, and in the following order:

- `classname` — Specifies the class of the codistributed array \(C\). Valid choices are the same as for the regular Inf function: 'double' (the default), or 'single'.

- `codist` — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for `codistributor1d` and `codistributor2dbc`.

- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\[C = \text{Inf}(n, \text{codist})\] is the same as \[C = \text{codistributed} \cdot \text{Inf}(n, \text{codist})\]. You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = Inf(8, codistributor1d());
end
```
C = Inf(m, n, ..., codist) and C = Inf([m, n, ...], codist) are the same as C = codistributed.Inf(m, n, ...) and C = codistributed.Inf([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    C = Inf(1000, codistributor());
end
```

creates a 1000-by-1000 codistributed double matrix C, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of C.

```matlab
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    C = Inf(10, 10, 'single', codist);
end
```

creates a 10-by-10 codistributed single array C, distributed by its columns. Each worker contains a 10-by-`labindex` local piece of C.

See Also

Inf | codistributed.NaN | distributed.Inf
Purpose
Create codistributed array of Not-a-Number values

Syntax

\[
\begin{align*}
C &= \text{codistributed.Na}(n) \\
C &= \text{codistributed.Na}(m, n, \ldots) \\
C &= \text{codistributed.Na}([m, n, \ldots]) \\
C &= \text{NaN}(n, \text{codist}) \\
C &= \text{NaN}(m, n, \ldots, \text{codist}) \\
C &= \text{NaN}([m, n, \ldots], \text{codist})
\end{align*}
\]

Description

\(C = \text{codistributed.Na}(n)\) creates an \(n\)-by-\(n\) codistributed matrix of NaN values.

\(C = \text{codistributed.Na}(m, n, \ldots)\) or \(C = \text{codistributed.Na}([m, n, \ldots])\) creates an \(m\)-by-\(n\)-by-... codistributed array of NaN values.

Optional arguments to \text{codistributed.Na} must be specified after the required arguments, and in the following order:

- **className** — Specifies the class of the codistributed array \(C\). Valid choices are the same as for the regular NaN function: 'double' (the default), or 'single'.

- **codist** — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\(C = \text{NaN}(n, \text{codist})\) is the same as \(C = \text{codistributed.Na}(n, \text{codist})\). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```matlab
spmd
    C = NaN(8, codistributor1d());
end
```
C = NaN(m, n, ..., codist) and C = NaN([m, n, ...], codist) are the same as C = codistributed.NaN(m, n, ...) and C = codistributed.NaN([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,
```
spmd(4)
    C = NaN(1000, codistributor())
end
```
creates a 1000-by-1000 codistributed double matrix C of NaN values, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of C.
```
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    C = NaN(10, 10, 'single', codist);
end
```
creates a 10-by-10 codistributed single array C, distributed by its columns. Each worker contains a 10-by-labindex local piece of C.

See Also

NaN | codistributed.Inf | distributed.NaN
Purpose

Create codistributed array of ones

Syntax

C = codistributed.ones(n)
C = codistributed.ones(m, n, ...)
C = codistributed.ones([m, n, ...])
C = ones(n, codist)
C = ones(m, n, codist)
C = ones([m, n], codist)

Description

C = codistributed.ones(n) creates an n-by-n codistributed matrix of ones of class double.

C = codistributed.ones(m, n, ...) or C = codistributed.ones([m, n, ...]) creates an m-by-n-by-... codistributed array of ones.

Optional arguments to codistributed.ones must be specified after the required arguments, and in the following order:

- **classname** — Specifies the class of the codistributed array C. Valid choices are the same as for the regular ones function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

- **codist** — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

- **noCommunication** — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

C = ones(n, codist) is the same as C = codistributed.ones(n, codist). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```matlab
spmd
```
C = ones(8, codistributor1d());
end

C = ones(m, n, codist) and C = ones([m, n], codist) are the same as C = codistributed.ones(m, n, ...) and C = codistributed.ones([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    C = codistributed.ones(1000, codistributor());
end
```

creates a 1000-by-1000 codistributed double array of ones, C, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of C.

```matlab
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    C = ones(10, 10, 'uint16', codist);
end
```

creates a 10-by-10 codistributed uint16 array of ones, C, distributed by its columns. Each worker contains a 10-by-labindex local piece of C.

See Also

ones | codistributed.eye | codistributed.zeros | distributed.ones
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Create codistributed array of uniformly distributed pseudo-random numbers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
</table>

- `R = codistributed.rand(n)`
- `R = codistributed.rand(m, n, ...)`
- `R = codistributed.rand([m, n, ...])`
- `R = rand(n, codist)`
- `R = rand(m, n, codist)`
- `R = rand([m, n], codist)`

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

- `R = codistributed.rand(n)` creates an `n`-by-`n` codistributed array of underlying class double.

- `R = codistributed.rand(m, n, ...) or R = codistributed.rand([m, n, ...])` creates an `m`-by-`n`-by-... codistributed array of underlying class double.

Optional arguments to `codistributed.rand` must be specified after the required arguments, and in the following order:

- `classname` — Specifies the class of the codistributed array `C`. Valid choices are the same as for the regular `rand` function: `'double'` (the default), `'single'`, `'int8'`, `'uint8'`, `'int16'`, `'uint16'`, `'int32'`, `'uint32'`, `'int64'`, and `'uint64'`.

- `codist` — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for `codistributor1d` and `codistributor2dbc`.

- `'noCommunication'` — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

R = `rand(n, codist)` is the same as `R = codistributed.rand(n, codist)`. You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:}

11-40
spmd
 R = codistributed.rand(8, codistributor1d());
end

R = rand(m, n, codist) and R = rand([m, n], codist) are the same as R = codistributed.rand(m, n, ...) and R = codistributed.rand([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Tips

When you use `rand` on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the `labindex` or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

Examples

With four workers,

```
spmd(4)
    R = codistributed.rand(1000, codistributor());
end
```

creates a 1000-by-1000 codistributed double array `R`, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of `R`.

```
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    R = codistributed.rand(10, 10, 'uint16', codist);
end
```

creates a 10-by-10 codistributed uint16 array `R`, distributed by its columns. Each worker contains a 10-by-1labindex local piece of `R`.

See Also

`rand` | `codistributed.randn` | `codistributed.sprand` | `codistributed.sprandn` | `distributed.rand`
Purpose
Create codistributed array of normally distributed random values

Syntax

RN = codistributed.randn(n)
RN = codistributed.randn(m, n, ...)
RN = codistributed.randn([m, n, ...])
RN = randn(n, codist)
RN = randn(m, n, codist)
RN = randn([m, n], codist)

Description

RN = codistributed.randn(n) creates an n-by-n codistributed array of normally distributed random values with underlying class double.

RN = codistributed.randn(m, n, ...) and RN = codistributed.randn([m, n, ...]) create an m-by-n-by-... codistributed array of normally distributed random values.

Optional arguments to codistributed.randn must be specified after the required arguments, and in the following order:

- *classname* — Specifies the class of the codistributed array C. Valid choices are the same as for the regular rand function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

- *codist* — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

RN = randn(n, codist) is the same as RN = codistributed.randn(n, codist). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

spmd
RN = codistributed.randn(8, codistributor1d());
end

RN = randn(m, n, codist) and RN = randn([m, n], codist) are the same as RN = codistributed.randn(m, n, ...) and RN = codistributed.randn([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Tips

When you use randn on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the labindex or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

Examples

With four workers,

```matlab
spmd(4)
    RN = codistributed.randn(1000);
end
```

creates a 1000-by-1000 codistributed double array RN, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of RN.

```matlab
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    RN = randn(10, 10, 'uint16', codist);
end
```

creates a 10-by-10 codistributed uint16 array RN, distributed by its columns. Each worker contains a 10-by-1 labindex local piece of RN.

See Also

randn | codistributed.rand | codistributed.sprand | codistributed.sprandn | distributed.randn
Purpose
Allocate space for sparse codistributed matrix

Syntax
SD = codistributed.spalloc(M, N, nzmax)
SD = spalloc(M, N, nzmax, codist)

Description
SD = codistributed.spalloc(M, N, nzmax) creates an M-by-N all-zero sparse codistributed matrix with room to hold nzmax nonzeros.

Optional arguments to codistributed.spalloc must be specified after the required arguments, and in the following order:

- codist — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. The allocated space for nonzero elements is consistent with the distribution of the matrix among the workers according to the Partition of the codistributor.

- 'noCommunication' — Specifies that no communication is to be performed when constructing the array, skipping some error checking steps. You can also use this argument with SD = spalloc(M, N, nzmax, codist).

SD = spalloc(M, N, nzmax, codist) is the same as SD = codistributed.spalloc(M, N, nzmax, codist). You can also use the optional arguments with this syntax.

Examples
Allocate space for a 1000-by-1000 sparse codistributed matrix with room for up to 2000 nonzero elements. Use the default codistributor. Define several elements of the matrix.

spmd % codistributed array created inside spmd statement
 N = 1000;
 SD = codistributed.spalloc(N, N, 2*N);
 for ii=1:N-1
 SD(ii,ii:ii+1) = [ii ii];
 end
end

See Also
spalloc | sparse | distributed.spalloc
Purpose
Create codistributed sparse identity matrix

Syntax
CS = codistributed.speye(n)
CS = codistributed.speye(m, n)
CS = codistributed.speye([m, n])
CS = speye(n, codist)
CS = speye(m, n, codist)
CS = speye([m, n], codist)

Description
CS = codistributed.speye(n) creates an n-by-n sparse codistributed array of underlying class double.
CS = codistributed.speye(m, n) or CS = codistributed.speye([m, n]) creates an m-by-n sparse codistributed array of underlying class double.

Optional arguments to codistributed.speye must be specified after the required arguments, and in the following order:

- codist — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for codistributor1d and codistributor2dbc.

- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

CS = speye(n, codist) is the same as CS = codistributed.speye(n, codist). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```
spmd
    CS = codistributed.speye(8, codistributor1d());
end
```
CS = speye(m, n, codist) and CS = speye([m, n], codist) are the same as CS = codistributed.speye(m, n) and CS = codistributed.speye([m, n]), respectively. You can also use the optional arguments with this syntax.

Note To create a sparse codistributed array of underlying class logical, first create an array of underlying class double and then cast it using the logical function:

```
CLS = logical(speye(m, n, codistributor1d()))
```

Examples

With four workers,

```
spmd(4)
    CS = speye(1000, codistributor())
end
```

creates a 1000-by-1000 sparse codistributed double array `CS`, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of `CS`.

```
spmd(4)
    codist = codistributor1d(2, 1:numlabs);
    CS = speye(10, 10, codist);
end
```

creates a 10-by-10 sparse codistributed double array `CS`, distributed by its columns. Each worker contains a 10-by-`labindex` local piece of `CS`.

See Also

`speye` | `distributed.speye` | `sparse`
Purpose
Create codistributed sparse array of uniformly distributed pseudo-random values

Syntax
- `CS = codistributed.sprand(m, n, density)`
- `CS = sprand(n, codist)`

Description
`CS = codistributed.sprand(m, n, density)` creates an `m`-by-`n` sparse codistributed array with approximately `density*m*n` uniformly distributed nonzero double entries.

Optional arguments to `codistributed.sprand` must be specified after the required arguments, and in the following order:

- `codist` — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for `codistributor1d` and `codistributor2dbc`.
- `'noCommunication'` — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

`CS = sprand(n, codist)` is the same as `CS = codistributed.sprand(n, codist)`. You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

```matlab
spmd
    CS = codistributed.sprand(8, 8, 0.2, codistributor1d());
end
```

Tips
When you use `sprand` on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the `labindex` or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.
Examples

With four workers,

```matlab
spmd(4)
    CS = codistributed.sprand(1000, 1000, .001);
end
```

creates a 1000-by-1000 sparse codistributed double array `CS` with approximately 1000 nonzeros. `CS` is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece of `CS`.

```matlab
spmd(4)
    codist = codistributor1d(2, 1:numlabs);
    CS = sprand(10, 10, .1, codist);
end
```

creates a 10-by-10 codistributed double array `CS` with approximately 10 nonzeros. `CS` is distributed by its columns, and each worker contains a 10-by-labindex local piece of `CS`.

See Also

`sprand` | `codistributed.rand` | `distributed.sprandn`
Purpose
Create codistributed sparse array of uniformly distributed pseudo-random values

Syntax

\[
\text{CS} = \text{codistributed.sprandn}(m, n, \text{density}) \\
\text{CS} = \text{sprandn}(n, \text{codist})
\]

Description

\[
\text{CS} = \text{codistributed.sprandn}(m, n, \text{density}) \text{ creates an } m\text{-by-}n \text{ sparse codistributed array with approximately } \text{density} \times m \times n \text{ normally distributed nonzero double entries.}
\]

Optional arguments to \text{codistributed.sprandn} must be specified after the required arguments, and in the following order:

- \text{codist} — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}.

- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\[
\text{CS} = \text{sprandn}(n, \text{codist}) \text{ is the same as } \text{CS} = \text{codistributed.sprandn}(n, \text{codist}). \text{ You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:}
\]

\[
\text{spmd} \\
\hspace{1em} \text{CS} = \text{codistributed.sprandn}(8, 8, 0.2, \text{codistributor1d}()); \\
\text{end}
\]

Tips

When you use \text{sprandn} on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the \text{labindex} or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.
Examples

With four workers,

```matlab
spmd(4)
    CS = codistributed.sprandn(1000, 1000, .001);
end
```

creates a 1000-by-1000 sparse codistributed double array `CS` with approximately 1000 nonzeros. `CS` is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece of `CS`.

```matlab
spmd(4)
    codist = codistributor1d(2, 1:numlabs);
    CS = sprandn(10, 10, .1, codist);
end
```

creates a 10-by-10 codistributed double array `CS` with approximately 10 nonzeros. `CS` is distributed by its columns, and each worker contains a 10-by-labindex local piece of `CS`.

See Also

`sprandn` | `codistributed.rand` | `codistributed.randn` | `sparse` | `codistributed.speye` | `codistributed.sprand` | `distributed.sprandn`
Purpose
Create codistributed true array

Syntax

\[
T = \text{codistributed.true}(n)
\]

\[
T = \text{codistributed.true}(m, n, \ldots)
\]

\[
T = \text{codistributed.true}([m, n, \ldots])
\]

\[
T = \text{true}(n, \text{codist})
\]

\[
T = \text{true}(m, n, \ldots, \text{codist})
\]

\[
T = \text{true}([m, n, \ldots], \text{codist})
\]

Description

\[
T = \text{codistributed.true}(n)
\]
creates an \(n\)-by-\(n\) codistributed array of logical ones.

\[
T = \text{codistributed.true}(m, n, \ldots) \quad \text{or} \quad T = \text{codistributed.true}([m, n, \ldots])
\]
creates an \(m\)-by-\(n\)-by-\(\ldots\) codistributed array of logical ones.

Optional arguments to \text{codistributed.true} must be specified after the required arguments, and in the following order:

- \text{codist} — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}.

- \text{'noCommunication'} — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\[
T = \text{true}(n, \text{codist})
\]
is the same as \[
T = \text{codistributed.true}(n, \text{codist})
\]. You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

\[
\text{spmd}
\]

\[
T = \text{true}(8, \text{codistributor1d}());
\]

\[
\text{end}
\]
T = true(m, n, ..., codist) and T = true([m, n, ...], codist) are the same as T = codistributed.true(m, n, ...) and T = codistributed.true([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    T = true(1000, codistributor());
end
```

creates a 1000-by-1000 codistributed true array T, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of T.

```matlab
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs);
    T = true(10, 10, codist);
end
```

creates a 10-by-10 codistributed true array T, distributed by its columns. Each worker contains a 10-by-labindex local piece of T.

See Also

true | codistributed.false | distributed.true
Purpose
Create codistributed array of zeros

Syntax
- \(C = \text{codistributed.zeros}(n) \)
- \(C = \text{codistributed.zeros}(m, n, \ldots) \)
- \(C = \text{codistributed.zeros}([m, n, \ldots]) \)
- \(C = \text{zeros}(n, \text{codist}) \)
- \(C = \text{zeros}(m, n, \text{codist}) \)
- \(C = \text{zeros}([m, n], \text{codist}) \)

Description
- \(C = \text{codistributed.zeros}(n) \) creates an \(n \)-by-\(n \) codistributed matrix of zeros of class double.
- \(C = \text{codistributed.zeros}(m, n, \ldots) \) or \(C = \text{codistributed.zeros}([m, n, \ldots]) \) creates an \(m \)-by-\(n \)-by-\(\ldots \) codistributed array of zeros.

Optional arguments to \text{codistributed.zeros} must be specified after the required arguments, and in the following order:

- **classname** — Specifies the class of the codistributed array \(C \). Valid choices are the same as for the regular \text{zeros} function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

- **codist** — A codistributor object specifying the distribution scheme of the resulting array. If omitted, the array is distributed using the default distribution scheme. For information on constructing codistributor objects, see the reference pages for \text{codistributor1d} and \text{codistributor2dbc}.

- 'noCommunication' — Specifies that no interworker communication is to be performed when constructing the array, skipping some error checking steps.

\(C = \text{zeros}(n, \text{codist}) \) is the same as \(C = \text{codistributed.zeros}(n, \text{codist}) \). You can also use the optional arguments with this syntax. To use the default distribution scheme, specify a codistributor constructor without arguments. For example:

\begin{verbatim}
spmd
end
\end{verbatim}
C = zeros(8, codistributor1d());
end

C = zeros(m, n, codist) and C = zeros([m, n], codist) are the same as C = codistributed.zeros(m, n, ...) and C = codistributed.zeros([m, n, ...]), respectively. You can also use the optional arguments with this syntax.

Examples

With four workers,

```matlab
spmd(4)
    C = codistributed.zeros(1000, codistributor());
end
```

creates a 1000-by-1000 codistributed double array of zeros, C, distributed by its second dimension (columns). Each worker contains a 1000-by-250 local piece of C.

```matlab
spmd(4)
    codist = codistributor('1d', 2, 1:numlabs)
    C = zeros(10, 10, 'uint16', codist);
end
```

creates a 10-by-10 codistributed uint16 array of zeros, C, distributed by its columns. Each worker contains a 10-by-labindex local piece of C.

See Also
zeros | codistributed.eye | codistributed.ones | distributed.zeros
Purpose
Create codistributor object for codistributed arrays

Syntax

```matlab
codist = codistributor()
codist = codistributor('1d')
codist = codistributor('1d', dim)
codist = codistributor('1d', dim, part)
codist = codistributor('2dbc')
codist = codistributor('2dbc', lbgrid)
codist = codistributor('2dbc', lbgrid, blksize)
```

Description

There are two schemes for distributing arrays. The scheme denoted by the string '1d' distributes an array along a single specified subscript, the distribution dimension, in a noncyclic, partitioned manner.

The scheme denoted by '2dbc', employed by the parallel matrix computation software ScaLAPACK, applies only to two-dimensional arrays, and varies both subscripts over a rectangular computational grid of labs (workers) in a blocked, cyclic manner.

`codist = codistributor()`, with no arguments, returns a default codistributor object with zero-valued or empty parameters, which can then be used as an argument to other functions to indicate that the function is to create a codistributed array if possible with default distribution. For example,

```matlab
Z = zeros(..., codistributor())
R = randn(..., codistributor())
```

`codist = codistributor('1d')` is the same as `codist = codistributor()`.
`codist = codistributor('1d', dim)` also forms a codistributor object with `codist.Dimension = dim` and default partition.
`codist = codistributor('1d', dim, part)` also forms a codistributor object with `codist.Dimension = dim` and `codist.Partition = part`.
codist = codistributor('2dbc') forms a 2-D block-cyclic codistributor object. For more information about '2dbc' distribution, see “2-Dimensional Distribution” on page 5-18.

codist = codistributor('2dbc', lbgrid) forms a 2-D block-cyclic codistributor object with the lab grid defined by lbgrid and with default block size.

codist = codistributor('2dbc', lbgrid, blksize) forms a 2-D block-cyclic codistributor object with the lab grid defined by lbgrid and with a block size defined by blksize.

codist = getCodistributor(D) returns the codistributor object of codistributed array D.

Examples

On four workers, create a 3-dimensional, 2-by-6-by-4 array with distribution along the second dimension, and partition scheme [1 2 1 2]. In other words, worker 1 contains a 2-by-1-by-4 segment, worker 2 a 2-by-2-by-4 segment, etc.

spmd
 dim = 2; % distribution dimension
 codist = codistributor('1d', dim, [1 2 1 2], [2 6 4]);
 if mod(labindex, 2)
 L = rand(2,1,4);
 else
 L = rand(2,2,4);
 end
 A = codistributed.build(L, codist)
end
A

On four workers, create a 20-by-5 codistributed array A, distributed by rows (over its first dimension) with a uniform partition scheme.

spmd
 dim = 1; % distribution dimension
 partn = codistributor1d.defaultPartition(20);
 codist = codistributor('1d', dim, partn, [20 5]);
L = magic(5) + labindex;
A = codistributed.build(L, codist)
end
A

See Also

codistributed | codistributor1d | codistributor2dbc |
getCodistributor | getLocalPart | redistribute
Purpose
Create 1-D codistributor object for codistributed arrays

Syntax
codist = codistributor1d()
codist = codistributor1d(dim)
codist = codistributor1d(dim, part)
codist = codistributor1d(dim, part, gsize)

Description
The 1-D codistributor distributes arrays along a single, specified distribution dimension, in a noncyclic, partitioned manner.

`codist = codistributor1d()` forms a 1-D codistributor object using default dimension and partition. The default dimension is the last nonsingleton dimension of the codistributed array. The default partition distributes the array along the default dimension as evenly as possible.

`codist = codistributor1d(dim)` forms a 1-D codistributor object for distribution along the specified dimension: 1 distributes along rows, 2 along columns, etc.

`codist = codistributor1d(dim, part)` forms a 1-D codistributor object for distribution according to the partition vector `part`. For example, `C1 = codistributor1d(1, [1, 2, 3, 4])` describes the distribution scheme for an array of ten rows to be codistributed by its first dimension (rows), to four workers, with 1 row to the first, 2 rows to the second, etc.

The resulting codistributor of any of the above syntax is incomplete because its global size is not specified. A codistributor constructed in this manner can be used as an argument to other functions as a template codistributor when creating codistributed arrays.

`codist = codistributor1d(dim, part, gsize)` forms a codistributor object with distribution dimension `dim`, distribution partition `part`, and global size of its codistributed arrays `gsize`. The resulting codistributor object is complete and can be used to build a codistributed array from its local parts with `codistributed.build`. To use a default dimension, specify `codistributor1d unsetDimension` for that argument; the distribution dimension is derived from `gsize` and is set to the last non-singleton dimension. Similarly, to use a default partition, specify
Examples

Use a codistributor1d object to create an N-by-N matrix of ones, distributed by rows.

```matlab
N = 1000;
spmd
codistr = codistributor1d(1); % 1 spec 1st dimension (rows).
C = codistributed.ones(N, codistr);
end
```

Use a fully specified codistributor1d object to create a trivial N-by-N codistributed matrix from its local parts. Then visualize which elements are stored on worker 2.

```matlab
N = 1000;
spmd
codistr = codistributor1d( ... 
codistributor1d.unsetDimension, ... 
codistributor1d.unsetPartition, ... 
[N, N]);
myLocalSize = [N, N]; % start with full size on each lab
% then set myLocalSize to default part of whole array:
myLocalSize(codistr.Dimension) = codistr.Partition(labindex);
myLocalPart = labindex*ones(myLocalSize); % arbitrary values
D = codistributed.build(myLocalPart, codistr);
end
spy(D == 2);
```
codistributor1d

See Also

codistributed | codistributor1d | codistributor2dbc | redistribute
Purpose
Default partition for codistributed array

Syntax
P = codistributor1d.defaultPartition(n)

Description
P = codistributor1d.defaultPartition(n) is a vector with \(\text{sum}(P) = n\) and \(\text{length}(P) = \text{numlabs}\). The first \(\text{rem}(n,\text{numlabs})\) elements of \(P\) are equal to \(\text{ceil}(n/\text{numlabs})\) and the remaining elements are equal to \(\text{floor}(n/\text{numlabs})\). This function is the basis for the default distribution of codistributed arrays.

Examples
If \(\text{numlabs} = 4\), the following code returns the vector \([3 \ 3 \ 2 \ 2]\) on all workers:

```matlab
spmd
    P = codistributor1d.defaultPartition(10)
end
```

See Also
codistributed | codistributed.colon | codistributor1d
Purpose
Create 2-D block-cyclic codistributor object for codistributed arrays

Syntax
- `codist = codistributor2dbc()`
- `codist = codistributor2dbc(lbgrid)`
- `codist = codistributor2dbc(lbgrid, blksize)`
- `codist = codistributor2dbc(lbgrid, blksize, orient)`
- `codist = codistributor2dbc(lbgrid, blksize, orient, gsize)`

Description
The 2-D block-cyclic codistributor can be used only for two-dimensional arrays. It distributes arrays along two subscripts over a rectangular computational grid of labs (workers) in a block-cyclic manner. For a complete description of 2-D block-cyclic distribution, default parameters, and the relationship between block size and lab grid, see “2-Dimensional Distribution” on page 5-18. The 2-D block-cyclic codistributor is used by the ScaLAPACK parallel matrix computation software library.

- `codist = codistributor2dbc()` forms a 2-D block-cyclic codistributor object using default lab grid and block size.

- `codist = codistributor2dbc(lbgrid)` forms a 2-D block-cyclic codistributor object using the specified lab grid and default block size. `lbgrid` must be a two-element vector defining the rows and columns of the lab grid, and the rows times columns must equal the number of workers for the codistributed array.

- `codist = codistributor2dbc(lbgrid, blksize)` forms a 2-D block-cyclic codistributor object using the specified lab grid and block size.

- `codist = codistributor2dbc(lbgrid, blksize, orient)` allows an orientation argument. Valid values for the orientation argument are 'row' for row orientation, and 'col' for column orientation of the lab grid. The default is row orientation.

The resulting codistributor of any of the above syntax is incomplete because its global size is not specified. A codistributor constructed this way can be used as an argument to other functions as a template codistributor when creating codistributed arrays.
codistributor2dbc

codist = codistributor2dbc(lbgrid, blksize, orient, gsize) forms a codistributor object that distributes arrays with the global size gsize. The resulting codistributor object is complete and can therefore be used to build a codistributed array from its local parts with codistributed.build. To use the default values for lab grid, block size, and orientation, specify them using codistributor2dbc.defaultLabGrid, codistributor2dbc.defaultBlockSize, and codistributor2dbc.defaultOrientation, respectively.

Examples

Use a codistributor2dbc object to create an N-by-N matrix of ones.

```matlab
N = 1000;
spmd
    codistr = codistributor2dbc();
    D = codistributed.ones(N, codistr);
end
```

Use a fully specified codistributor2dbc object to create a trivial N-by-N codistributed matrix from its local parts. Then visualize which elements are stored on worker 2.

```matlab
N = 1000;
spmd
    codistr = codistributor2dbc(...
        codistributor2dbc.defaultLabGrid, ...
        codistributor2dbc.defaultBlockSize, ...
        'row', [N, N]);
    myLocalSize = [length(codistr.globalIndices(1)), ...
        length(codistr.globalIndices(2))];
    myLocalPart = labindex*ones(myLocalSize);
    D = codistributed.build(myLocalPart, codistr);
end
spy(D == 2);
```

See Also
codistributed | codistributor1d | getLocalPart | redistribute
Purpose
Default computational grid for 2-D block-cyclic distributed arrays

Syntax
grid = codistributor2dbc.defaultLabGrid()

Description
grid = codistributor2dbc.defaultLabGrid() returns a vector, grid = [nrow ncol], defining a computational grid of nrow-by-ncol workers in the open parallel pool, such that numlabs = nrow x ncol.

The grid defined by codistributor2dbc.defaultLabGrid is as close to a square as possible. The following rules define nrow and ncol:

- If numlabs is a perfect square, nrow = ncol = sqrt(numlabs).
- If numlabs is an odd power of 2, then nrow = ncol/2 = sqrt(numlabs/2).
- nrow <= ncol.
- If numlabs is a prime, nrow = 1, ncol = numlabs.
- nrow is the greatest integer less than or equal to sqrt(numlabs) for which ncol = numlabs/nrow is also an integer.

Examples
View the computational grid layout of the default distribution scheme for the open parallel pool.

spmd
 grid = codistributor2dbc.defaultLabGrid
end

See Also
codistributed | codistributor2dbc | numlabs
Purpose

Create Composite object

Syntax

C = Composite()
C = Composite(nlabs)

Description

C = Composite() creates a Composite object on the client using workers from the parallel pool. The actual number of workers referenced by this Composite object depends on the size of the pool and any existing Composite objects. Generally, you should construct Composite objects outside any spmd statement.

C = Composite(nlabs) creates a Composite object on the parallel pool set that matches the specified constraint. nlabs must be a vector of length 1 or 2, containing integers or Inf. If nlabs is of length 1, it specifies the exact number of workers to use. If nlabs is of size 2, it specifies the minimum and maximum number of workers to use. The actual number of workers used is the maximum number of workers compatible with the size of the parallel pool, and with other existing Composite objects. An error is thrown if the constraints on the number of workers cannot be met.

A Composite object has one entry for each lab; initially each entry contains no data. Use either indexing or an spmd block to define values for the entries.

Tips

- A Composite is created on the workers of the existing parallel pool. If no pool exists, Composite will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and Composite cannot start one, the result is a 1-by-1 Composite in the client workspace.

Examples

Create a Composite object with no defined entries, then assign its values:

 c = Composite(); % One element per worker in the pool
 for ii = 1:length(c)
 % Set the entry for each worker to zero
c{ii} = 0; % Value stored on each worker
end

See Also
parpool | spmd
createCommunicatingJob

Purpose
Create communicating job on cluster

Syntax

```matlab
job = createCommunicatingJob(cluster)
job = createCommunicatingJob(...,'p1',v1,'p2',v2,...)
job = createCommunicatingJob(...,'Type','pool',...)
job = createCommunicatingJob(...,'Type','spmd',...)
job = createCommunicatingJob(...,'Profile','profileName',...)
```

Description

`job = createCommunicatingJob(cluster)` creates a communicating job object for the identified cluster.

`job = createCommunicatingJob(...,'p1',v1,'p2',v2,...)` creates a communicating job object with the specified property values. For a listing of the valid properties of the created object, see the `parallel.Job` object reference page. The property name must be in the form of a string, with the value being the appropriate type for that property. In most cases, the values specified in these property-value pairs override the values in the profile. But when you specify `AttachedFiles` or `AdditionalPaths` at the time of creating a job, the settings are combined with those specified in the applicable profile. If an invalid property name or property value is specified, the object will not be created.

`job = createCommunicatingJob(...,'Type','pool',...)` creates a communicating job of type `'pool'`. This is the default if `Type` is not specified. A `'pool'` job runs the specified task function with a parallel pool available to run the body of `parfor` loops or `spmd` blocks. Note that only one worker runs the task function, and the rest of the workers in the cluster form the parallel pool. So on a cluster of N workers for a `'pool'` type job, only N-1 workers form the actual pool that performs the `spmd` and `parfor` code found within the task function.

`job = createCommunicatingJob(...,'Type','spmd',...)` creates a communicating job of type `'spmd'`, where the specified task function runs simultaneously on all workers, and `lab*` functions can be used for communication between workers.

`job = createCommunicatingJob(...,'Profile','profileName',...)`
createCommunicatingJob

creates a communicating job object with the property values specified in the profile 'profileName'. If no profile is specified and the cluster object has a value specified in its 'Profile' property, the cluster’s profile is automatically applied.

Examples

Pool Type Communicating Job

Consider the function 'myFunction' which uses a parfor loop:

```matlab
function result = myFunction(N)
    result = 0;
    parfor ii=1:N
        result = result + max(eig(rand(ii)));
    end
end
```

Create a communicating job object to evaluate myFunction on the default cluster:

```matlab
myCluster = parcluster;
j = createCommunicatingJob(myCluster,'Type','pool');
```

Add the task to the job, supplying an input argument:

```matlab
createTask(j, @myFunction, 1, {100});
```

Set the number of workers required for parallel execution:

```matlab
j.NumWorkersRange = [5 10];
```

Run the job.

```matlab
submit(j);
```

Wait for the job to finish and retrieve its results:

```matlab
wait(j)
out = fetchOutputs(j)
```

Delete the job from the cluster.
delete(j);

See Also createJob | createTask | findJob | parcluster | submit
createJob

Purpose
Create independent job on cluster

Syntax

```matlab
obj = createJob(cluster)
obj = createJob(...,'p1',v1,'p2',v2,...)
job = createJob(...,'Profile','profileName',...)
obj = createJob
obj = createJob()
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>The job object.</td>
</tr>
<tr>
<td>cluster</td>
<td>The cluster object created by <code>parcluster</code>.</td>
</tr>
<tr>
<td>p1, p2</td>
<td>Object properties configured at object creation.</td>
</tr>
<tr>
<td>v1, v2</td>
<td>Initial values for corresponding object properties.</td>
</tr>
</tbody>
</table>

Description

`obj = createJob(cluster)` creates an independent job object for the identified cluster.

The job’s data is stored in the location specified by the cluster’s `JobStorageLocation` property.

`obj = createJob(...,'p1',v1,'p2',v2,...)` creates a job object with the specified property values. For a listing of the valid properties of the created object, see the `parallel.Job` object reference page. The property name must be in the form of a string, with the value being the appropriate type for that property. In most cases, the values specified in these property-value pairs override the values in the profile; but when you specify `AttachedFiles` or `AdditionalPaths` at the time of creating a job, the settings are combined with those specified in the applicable profile. If an invalid property name or property value is specified, the object will not be created.

`job = createJob(...,'Profile','profileName',...)` creates an independent job object with the property values specified in the profile `profileName`. If a profile is not specified and the cluster has a value specified in its `Profile` property, the cluster’s profile is automatically
applied. For details about defining and applying profiles, see “Clusters and Cluster Profiles” on page 6-14.

\[
\text{obj} = \text{createJob}\text{ or } \text{obj} = \text{createJob()}\text{ without any input arguments}
\]

was a convenience function supported in the old programming interface before R2012a. It creates a job using the scheduler identified by the default cluster profile and sets the property values of the job as specified in that profile. It is recommended that you use the new interface instead of this form of the function. For more information about the differences between the interfaces, see “New Programming Interface” in the R2012a release notes.

Note Support for this form of the `createJob()` function without input arguments will be discontinued in a future release.

Examples

Create and Run a Basic Job

Construct an independent job object using the default profile.

```matlab
c = parcluster
j = createJob(c);
```

Add tasks to the job.

```matlab
for i = 1:10
    createTask(j,@rand,1,{10});
end
```

Run the job.

```matlab
submit(j);
```

Wait for the job to finish running, and retrieve the job results.

```matlab
wait(j);
out = fetchOutputs(j);
```
Display the random matrix returned from the third task.

disp(out{3});

Delete the job.

delete(j);

Create a Job with Attached Files
Construct an independent job with attached files in addition to those specified in the default profile.

c = parcluster
j = createJob(c,'AttachedFiles',...
 {'myapp/folderA','myapp/folderB','myapp/file1.m'});

See Also
createCommunicatingJob | createTask | findJob | parcluster | submit
Purpose

Create new task in job

Syntax

\[
t = \text{createTask}(j, F, N, \{\text{inputargs}\})
\]

\[
t = \text{createTask}(j, F, N, \{C1,\ldots,Cm\})
\]

\[
t = \text{createTask}(\ldots, 'p1', v1, 'p2', v2, \ldots)
\]

\[
t = \text{createTask}(\ldots, 'Profile', 'ProfileName', \ldots)
\]

Arguments

- **t**: Task object or vector of task objects.
- **j**: The job that the task object is created in.
- **F**: A handle to the function that is called when the task is evaluated, or an array of function handles.
- **N**: The number of output arguments to be returned from execution of the task function. This is a double or array of doubles.
- **\{inputargs\}**: A row cell array specifying the input arguments to be passed to the function \(F\). Each element in the cell array will be passed as a separate input argument. If this is a cell array of cell arrays, a task is created for each cell array.
- **\{C1,\ldots,Cm\}**: Cell array of cell arrays defining input arguments to each of \(m\) tasks.
- **\(p1, p2\)**: Task object properties configured at object creation.
- **\(v1, v2\)**: Initial values for corresponding task object properties.

Description

\(t = \text{createTask}(j, F, N, \{\text{inputargs}\})\) creates a new task object in job \(j\), and returns a reference, \(t\), to the added task object. This task evaluates the function specified by a function handle or function
name F, with the given input arguments \{inputargs\}, returning N output arguments.

t = createTask(j, F, N, \{C1,\ldots,Cm\}) uses a cell array of m cell arrays to create m task objects in job j, and returns a vector, t, of references to the new task objects. Each task evaluates the function specified by a function handle or function name F. The cell array C1 provides the input arguments to the first task, C2 to the second task, and so on, so that there is one task per cell array. Each task returns N output arguments. If F is a cell array, each element of F specifies a function for each task in the vector; it must have m elements. If N is an array of doubles, each element specifies the number of output arguments for each task in the vector. Multidimensional matrices of inputs F, N and \{C1,\ldots,Cm\} are supported; if a cell array is used for F, or a double array for N, its dimensions must match those of the input arguments cell array of cell arrays. The output t will be a vector with the same number of elements as \{C1,\ldots,Cm\}. Note that because a communicating or parallel job has only one task, this form of vectorized task creation is not appropriate for such jobs.

t = createTask(..., 'p1',v1,'p2',v2,...) adds a task object with the specified property values. For a listing of the valid properties of the created object, see the parallel.Task object reference page. The property name must be in the form of a string, with the value being the appropriate type for that property. The values specified in these property-value pairs override the values in the profile. If an invalid property name or property value is specified, the object will not be created.

t = createTask(...,'Profile', 'ProfileName',...) creates a task object with the property values specified in the cluster profile ProfileName. For details about defining and applying cluster profiles, see “Clusters and Cluster Profiles” on page 6-14.

Examples

Create a Job with One Task

Create a job object.

c = parcluster(); % Use default profile
j = createJob(c);

Add a task object which generates a 10-by-10 random matrix.

```
t = createTask(j, @rand, 1, {10,10});
```

Run the job.

```
submit(j);
```

Wait for the job to finish running, and get the output from the task evaluation.

```
wait(j);
taskoutput = fetchOutputs(j);
```

Show the 10-by-10 random matrix.

```
disp(taskoutput{1});
```

Create a Job with Three Tasks

This example creates a job with three tasks, each of which generates a 10-by-10 random matrix.

```
c = parcluster(); % Use default profile
j = createJob(c);
t = createTask(j, @rand, 1, {{10,10} {10,10} {10,10}});
```

Create a Task with Different Property Values

This example creates a task that captures the worker diary, regardless of the setting in the profile.

```
c = parcluster(); % Use default profile
j = createJob(c);
t = createTask(j,@rand,1,{10,10},{'CaptureDiary',true});
```

See Also

createJob | createCommunicatingJob | findTask
Purpose
Remove job or task object from cluster and memory

Syntax
delete(obj)

Description
delete(obj) removes the job or task object, obj, from the local MATLAB session, and removes it from the cluster’s JobStorageLocation. When the object is deleted, references to it become invalid. Invalid objects should be removed from the workspace with the clear command. If multiple references to an object exist in the workspace, deleting one reference to that object invalidates the remaining references to it. These remaining references should be cleared from the workspace with the clear command.

When you delete a job object, this also deletes all the task objects contained in that job. Any references to those task objects will also be invalid, and you should clear them from the workspace.

If obj is an array of objects and one of the objects cannot be deleted, the other objects in the array are deleted and a warning is returned.

Because its data is lost when you delete an object, delete should be used only after you have retrieved all required output data from the effected object.

Examples
Create a job object using the default profile, then delete the job:

```matlab
myCluster = parcluster;
j = createJob(myCluster, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
delete(j);
clear j t
```

Delete all jobs on the cluster identified by the profile myProfile:

```matlab
myCluster = parcluster('myProfile');
delete(myCluster.Jobs)
```
Purpose
Shut down parallel pool

Syntax
delete(poolobj)

Description
delete(poolobj) shuts down the parallel pool associated with the object poolobj, and destroys the communicating job that comprises the pool. Subsequent parallel language features will automatically start a new parallel pool, unless your parallel preferences disable this behavior.

References to the deleted pool object become invalid. Invalid objects should be removed from the workspace with the `clear` command. If multiple references to an object exist in the workspace, deleting one reference to that object invalidates the remaining references to it. These remaining references should be cleared from the workspace with the `clear` command.

Examples
Get the current pool and shut it down.

```matlab
poolobj = gcp('nocreate');
delete(poolobj);
```

See Also
gcp | parpool
Purpose
Demote job in cluster queue

Syntax
demote(c, job)

Arguments
c Cluster object that contains the job.
job Job object demoted in the job queue.

Description
demote(c, job) demotes the job object job that is queued in the cluster c.

If job is not the last job in the queue, demote exchanges the position of job and the job that follows it in the queue.

Tips
After a call to demote or promote, there is no change in the order of job objects contained in the Jobs property of the cluster object. To see the scheduled order of execution for jobs in the queue, use the findJob function in the form [pending queued running finished] = findJob(c).

Examples
Create and submit multiple jobs to the job manager identified by the default parallel configuration:

c = parcluster();
j1 = createJob(c,'Name','Job A'); createTask(j1,@rand,1,{3});
j2 = createJob(c,'Name','Job B'); createTask(j2,@rand,1,{3});
j3 = createJob(c,'Name','Job C'); createTask(j3,@rand,1,{3});
submit(j1);submit(j2);Submit(j3);

Demote one of the jobs by one position in the queue:

demote(c, j2)

Examine the new queue sequence:

[pjobs, qjobs, rjobs, fjobs] = findJob(c);
get(qjobs, 'Name')
'Job A'
'Job C'
'Job B'

See Also: createJob | findJob | promote | submit
Purpose
Display or save Command Window text of batch job

Syntax
diary(job)
diary(job, 'filename')

Arguments
job Job from which to view Command Window output text.
'filename' File to append with Command Window output text from batch job

Description
diary(job) displays the Command Window output from the batch job in the MATLAB Command Window. The Command Window output will be captured only if the batch command included the 'CaptureDiary' argument with a value of true.
diary(job, 'filename') causes the Command Window output from the batch job to be appended to the specified file.

See Also
diary | batch | load
Purpose

Create distributed array from data in client workspace

Syntax

\[D = \text{distributed}(X) \]

Description

\[D = \text{distributed}(X) \]
creates a distributed array from \(X \). \(X \) is an array stored on the MATLAB client, and \(D \) is a distributed array stored in parts on the workers of the open parallel pool.

Constructing a distributed array from local data this way is appropriate only if the MATLAB client can store the entirety of \(X \) in its memory. To construct large distributed arrays, use one of the static constructor methods such as \text{distributed.ones}, \text{distributed.zeros}, etc.

If the input argument is already a distributed array, the result is the same as the input.

Tips

- A distributed array is created on the workers of the existing parallel pool. If no pool exists, \text{distributed} will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and \text{distributed} cannot start one, the result is the full array in the client workspace.

Examples

Create a small array and distribute it:

\[
\begin{align*}
\text{Nsmall} &= 50; \\
D1 &= \text{distributed} (\text{magic(Nsmall)});
\end{align*}
\]

Create a large distributed array using a static build method:

\[
\begin{align*}
\text{Nlarge} &= 1000; \\
D2 &= \text{distributed.rand(Nlarge)};
\end{align*}
\]
Purpose
Create distributed cell array

Syntax

\[
D = \text{distributed.cell}(n)
\]

\[
D = \text{distributed.cell}(m, n, p, ...)
\]

\[
D = \text{distributed.cell}([m, n, p, ...])
\]

Description

\[
D = \text{distributed.cell}(n)
\] creates an \(n \)-by-\(n \) distributed array of underlying class cell.

\[
D = \text{distributed.cell}(m, n, p, ...)
\] or \(D = \text{distributed.cell}([m, n, p, ...]) \) create an \(m \)-by-\(n \)-by-\(p \)-by-... distributed array of underlying class cell.

Examples

Create a distributed 1000-by-1000 cell array:

\[
D = \text{distributed.cell}(1000)
\]

See Also

cell | codistributed.cell
Purpose
Create distributed identity matrix

Syntax

D = distributed.eye(n)
D = distributed.eye(m, n)
D = distributed.eye([m, n])
D = distributed.eye(..., classname)

Description

D = distributed.eye(n) creates an n-by-n distributed identity matrix of underlying class double.

D = distributed.eye(m, n) or D = distributed.eye([m, n]) creates an m-by-n distributed matrix of underlying class double with 1’s on the diagonal and 0’s elsewhere.

D = distributed.eye(..., classname) specifies the class of the distributed array D. Valid choices are the same as for the regular eye function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples

Create a 1000-by-1000 distributed identity matrix of class double:

D = distributed.eye(1000)

See Also

eye | codistributed.eye | distributed.ones | distributed.speye | distributed.zeros
Purpose
Create distributed false array

Syntax
\[
F = \text{distributed.false}(n) \\
F = \text{distributed.false}(m, n, ...) \\
F = \text{distributed.false}([m, n, ...])
\]

Description
\[
F = \text{distributed.false}(n) \text{ creates an } n\text{-by-}n \text{ distributed array of logical zeros.}
\]
\[
F = \text{distributed.false}(m, n, ...) \text{ or } F = \text{distributed.false}([m, n, ...]) \text{ creates an } m\text{-by-}n\text{-by-... distributed array of logical zeros.}
\]

Examples
Create a 1000-by-1000 distributed false array.

\[
F = \text{distributed.false}(1000);
\]

See Also
false | codistributed.false | distributed.true
Purpose
Create distributed array of Inf values

Syntax

D = distributed.Inf(n)
D = distributed.Inf(m, n, ...)
D = distributed.Inf([m, n, ...])
D = distributed.Inf(..., classname)

Description

D = distributed.Inf(n) creates an n-by-n distributed matrix of Inf values.

D = distributed.Inf(m, n, ...) or D = distributed.Inf([m, n, ...]) creates an m-by-n-by-... distributed array of Inf values.

D = distributed.Inf(..., classname) specifies the class of the distributed array D. Valid choices are the same as for the regular Inf function: 'double' (the default), or 'single'.

Examples

Create a 1000-by-1000 distributed matrix of Inf values:

D = distributed.Inf(1000)

See Also

Inf | codistributed.Inf | distributed.NaN
Purpose
Create distributed array of Not-a-Number values

Syntax

D = distributed.NaN(n)
D = distributed.NaN(m, n, ...)
D = distributed.NaN([m, n, ...])
D = distributed.NaN(..., classname)

Description

D = distributed.NaN(n) creates an n-by-n distributed matrix of NaN values.

D = distributed.NaN(m, n, ...) or D = distributed.NaN([m, n, ...]) creates an m-by-n-by-... distributed array of NaN values.

D = distributed.NaN(..., classname) specifies the class of the distributed array D. Valid choices are the same as for the regular NaN function: 'double' (the default), or 'single'.

Examples

Create a 1000-by-1000 distributed matrix of NaN values of class double:

D = distributed.NaN(1000)

See Also

Inf | codistributed.NaN | distributed.Inf
Purpose
Create distributed array of ones

Syntax
D = distributed.ones(n)
D = distributed.ones(m, n, ...)
D = distributed.ones([m, n, ...])
D = distributed.ones(..., classname)

Description
D = distributed.ones(n) creates an n-by-n distributed matrix of ones of class double.
D = distributed.ones(m, n, ...) or D = distributed.ones([m, n, ...]) creates an m-by-n-by-... distributed array of ones.
D = distributed.ones(..., classname) specifies the class of the distributed array D. Valid choices are the same as for the regular ones function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples
Create a 1000-by-1000 distributed matrix of ones of class double:
D = distributed.ones(1000);

See Also
ones | codistributed.ones | distributed.eye | distributed.zeros
distributed.rand

Purpose
Create distributed array of uniformly distributed pseudo-random numbers

Syntax
\[R = \text{distributed.rand}(n) \]
\[R = \text{distributed.rand}(m, n, ...) \]
\[R = \text{distributed.rand}([m, n, ...]) \]
\[R = \text{distributed.rand}(..., \text{classname}) \]

Description
- \[R = \text{distributed.rand}(n) \] creates an \(n \)-by-\(n \) distributed array of underlying class double.
- \[R = \text{distributed.rand}(m, n, ...) \] or \[R = \text{distributed.rand}([m, n, ...]) \] creates an \(m \)-by-\(n \)-by-... distributed array of underlying class double.
- \[R = \text{distributed.rand}(..., \text{classname}) \] specifies the class of the distributed array \(R \). Valid choices are the same as for the regular \text{rand} function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Tips
When you use \text{rand} on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the \text{labindex} or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

Examples
Create a 1000-by-1000 distributed matrix of random values of class double:

\[R = \text{distributed.rand}(1000); \]

See Also
\text{rand} | \text{codistributed.rand} | \text{distributed.randn} | \text{distributed.sprand} | \text{distributed.sprandn}
Purpose
Create distributed array of normally distributed random values

Syntax

```
RN = distributed.randn(n)
RN = distributed.randn(m, n, ...)  
RN = distributed.randn([m, n, ...])
RN = distributed.randn(..., classname)
```

Description

`RN = distributed.randn(n)` creates an n-by-n distributed array of normally distributed random values with underlying class double.

`RN = distributed.randn(m, n, ...)` and `RN = distributed.randn([m, n, ...])` create an m-by-n-by-... distributed array of normally distributed random values.

`RN = distributed.randn(..., classname)` specifies the class of the distributed array D. Valid choices are the same as for the regular `randn` function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Tips
When you use `randn` on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the `labindex` or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

Examples
Create a 1000-by-1000 distributed matrix of normally distributed random values of class double:

```
RN = distributed.randn(1000);
```

See Also
`randn` | `codistributed.randn` | `distributed.rand` | `distributed.speye` | `distributed.sprand` | `distributed.sprandn`
Purpose
Allocate space for sparse distributed matrix

Syntax
SD = distributed.spalloc(M, N, nzmax)

Description
SD = distributed.spalloc(M, N, nzmax) creates an M-by-N all-zero sparse distributed matrix with room to hold nzmax nonzeros.

Examples
Allocate space for a 1000-by-1000 sparse distributed matrix with room for up to 2000 nonzero elements, then define several elements:

N = 1000;
SD = distributed.spalloc(N, N, 2*N);
for ii=1:N-1
 SD(ii,ii:ii+1) = [ii ii];
end

See Also
spalloc | codistributed.spalloc | sparse
Purpose

Create distributed sparse identity matrix

Syntax

DS = distributed.speye(n)
DS = distributed.speye(m, n)
DS = distributed.speye([m, n])

Description

DS = distributed.speye(n) creates an n-by-n sparse distributed array of underlying class double.

DS = distributed.speye(m, n) or DS = distributed.speye([m, n]) creates an m-by-n sparse distributed array of underlying class double.

Examples

Create a distributed 1000-by-1000 sparse identity matrix:

```matlab
N = 1000;
DS = distributed.speye(N);
```

See Also

speye | codistributed.speye | distributed.eye
distributed.sprand

Purpose
Create distributed sparse array of uniformly distributed pseudo-random values

Syntax
DS = distributed.sprand(m, n, density)

Description
DS = distributed.sprand(m, n, density) creates an m-by-n sparse distributed array with approximately density*m*n uniformly distributed nonzero double entries.

Tips
When you use sprand on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the labindex or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

Examples
Create a 1000-by-1000 sparse distributed double array DS with approximately 1000 nonzeros.

DS = distributed.sprand(1000, 1000, .001);

See Also
sprand | codistributed.sprand | distributed.rand | distributed.randn | sparse | distributed.sp.eye | distributed.sprandn
Purpose

Create distributed sparse array of normally distributed pseudo-random values

Syntax

DS = distributed.sprandn(m, n, density)

Description

DS = distributed.sprandn(m, n, density) creates an m-by-n sparse distributed array with approximately density*m*n normally distributed nonzero double entries.

Tips

When you use sprandn on the workers in the parallel pool, or in a distributed or parallel job (including pmode), each worker sets its random generator seed to a value that depends only on the labindex or task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job, you get the same random data.

Examples

Create a 1000-by-1000 sparse distributed double array DS with approximately 1000 nonzeros.

DS = distributed.sprandn(1000, 1000, .001);

See Also

sprandn | codistributed.sprandn | distributed.rand | distributed.randn | sparse | distributed.speye | distributed.sprand
Purpose
Create distributed true array

Syntax
```
T = distributed.true(n)
T = distributed.true(m, n, ...)
T = distributed.true([m, n, ...])
```

Description
```
T = distributed.true(n) creates an n-by-n distributed array of logical ones.
T = distributed.true(m, n, ...) or T = distributed.true([m, n, ...]) creates an m-by-n-by-... distributed array of logical ones.
```

Examples
Create a 1000-by-1000 distributed true array.
```
T = distributed.true(1000);
```

See Also
true | codistributed.true | distributed.false
Purpose

Create distributed array of zeros

Syntax

```
D = distributed.zeros(n)
D = distributed.zeros(m, n, ...)
D = distributed.zeros([m, n, ...])
D = distributed.zeros(..., classname)
```

Description

`D = distributed.zeros(n)` creates an n-by-n distributed matrix of zeros of class double.

`D = distributed.zeros(m, n, ...)` or `D = distributed.zeros([m, n, ...])` creates an m-by-n-by-... distributed array of zeros.

`D = distributed.zeros(..., classname)` specifies the class of the distributed array D. Valid choices are the same as for the regular zeros function: 'double' (the default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples

Create a 1000-by-1000 distributed matrix of zeros using default class:

```
D = distributed.zeros(1000);
```

See Also

zeros | codistributed.zeros | distributed.eye | distributed.ones
dload

Purpose
Load distributed arrays and Composite objects from disk

Syntax
```
dload

dload filename

dload filename X

dload filename X Y Z ...

dload -scatter ...

[X,Y,Z,...] = dload('filename','X','Y','Z',...)
```

Description
- `dload` without any arguments retrieves all variables from the binary file named `matlab.mat`. If `matlab.mat` is not available, the command generates an error.

- `dload filename` retrieves all variables from a file given a full pathname or a relative partial pathname. If `filename` has no extension, `dload` looks for `filename.mat`. `dload` loads the contents of distributed arrays and Composite objects onto parallel pool workers, other data types are loaded directly into the workspace of the MATLAB client.

- `dload filename X` loads only variable `X` from the file. `dload filename X Y Z ...` loads only the specified variables. `dload` does not support wildcards, nor the `-regexp` option. If any requested variable is not present in the file, a warning is issued.

- `dload -scatter ...` distributes nondistributed data if possible. If the data cannot be distributed, a warning is issued.

- `[X,Y,Z,...] = dload('filename','X','Y','Z',...)` returns the specified variables as separate output arguments (rather than a structure, which the `load` function returns). If any requested variable is not present in the file, an error occurs.

When loading distributed arrays, the data is distributed over the available parallel pool workers using the default distribution scheme. It is not necessary to have the same size pool open when loading as when saving using `dsave`.

When loading Composite objects, the data is sent to the available parallel pool workers. If the Composite is too large to fit on the current
parallel pool, the data is not loaded. If the Composite is smaller than the current parallel pool, a warning is issued.

Examples

Load variables X, Y, and Z from the file `fname.mat`:

```matlab
dload fname X Y Z
```

Use the function form of `dload` to load distributed arrays P and Q from file `fname.mat`:

```matlab
[P,Q] = dload('fname.mat','P','Q');
```

See Also

`load` | `Composite` | `distributed` | `dsave` | `parpool`
dsave

Purpose
Save workspace distributed arrays and Composite objects to disk

Syntax
dsave

dsave filename

dsave filename X

dsave filename X Y Z

Description
dsSave without any arguments creates the binary file named matlab.mat and writes to the file all workspace variables, including distributed arrays and Composite objects. You can retrieve the variable data using dload.

dsSave filename saves all workspace variables to the binary file named filename.mat. If you do not specify an extension for filename, it assumes the extension .mat.

dsSave filename X saves only variable X to the file.

dsSave filename X Y Z saves X, Y, and Z. dsSave does not support wildcards, nor the -regexp option.

dsSave does not support saving sparse distributed arrays.

Examples
With a parallel pool open, create and save several variables to mydatafile.mat:

```
D = distributed.rand(1000); % Distributed array
C = Composite(); %
C{1} = magic(20); % Data on worker 1 only
X = rand(40); % Client workspace only
dsSave mydatafile D C X % Save all three variables
```

See Also
save | Composite | distributed | dload | parpool
Purpose
Check whether Composite is defined on workers

Syntax
h = exist(C,labidx)
h = exist(C)

Description
h = exist(C,labidx) returns true if the entry in Composite C has a defined value on the worker with labindex labidx, false otherwise. In the general case where labidx is an array, the output h is an array of the same size as labidx, and h(i) indicates whether the Composite entry labidx(i) has a defined value.

h = exist(C) is equivalent to h = exist(C, 1:length(C)).

If exist(C,labidx) returns true, C(labidx) does not throw an error, provided that the values of C on those workers are serializable. The function throws an error if any labidx is invalid.

Examples
Define a variable on a random number of workers. Check on which workers the Composite entries are defined, and get all those values:

```matlab
spmd
    if rand() > 0.5
        c = labindex;
    end
end
ind = exist(c);
cvals = c(ind);
```

See Also
Composite
Purpose
Determine if gpuArray or CUDAKernel is available on GPU

Syntax
TF = existsOnGPU(DATA)

Description
TF = existsOnGPU(DATA) returns a logical value indicating whether the gpuArray or CUDAKernel object represented by DATA is still present on the GPU and available from your MATLAB session. The result is false if DATA is no longer valid and cannot be used. Such arrays and kernels are invalidated when the GPU device has been reset with any of the following:

- reset(dev) % Where dev is the current gpuDevice
- gpuDevice(ix) % Where ix is valid index of current or different device
- gpuDevice([]) % With an empty argument (as opposed to no argument)

Examples
Query Existence of gpuArray
Create a gpuArray on the selected GPU device, then reset the device. Query array’s existence and content before and after resetting.

```matlab
g = gpuDevice(1);
M = gpuArray(magic(4));
M_exists = existsOnGPU(M)

1

M % Display gpuArray

16  2  3  13
5  11 10  8
9  7  6 12
4 14 15  1

reset(g);
M_exists = existsOnGPU(M)

0
```
M % Try to display gpuArray

Data no longer exists on the GPU.

clear M

See Also gpuDevice | gpuArray | parallel.gpu.CUDAKernel | reset
Purpose

Retrieve next available unread FevalFuture outputs

Syntax

\[\text{[idx,B1,B2,...,Bn]} = \text{fetchNext}(F) \]
\[\text{[idx,B1,B2,...,Bn]} = \text{fetchNext}(F, \text{TIMEOUT}) \]

Description

\[\text{[idx,B1,B2,...,Bn]} = \text{fetchNext}(F) \]
waits for an unread FevalFuture in the array of futures \(F \) to finish, and then returns the index of that future in array \(F \) as \(\text{idx} \), along with the future’s results in \(B1, B2, ..., Bn \). Before this call, the 'Read' property of the particular future is false; afterward it is true.

\[\text{[idx,B1,B2,...,Bn]} = \text{fetchNext}(F, \text{TIMEOUT}) \]
waits no longer than \(\text{TIMEOUT} \) seconds for a result to become available. If the timeout expires before any result becomes available, all output arguments are empty.

If there are no futures in \(F \) whose 'Read' property is false, then an error is reported. You can check whether there are any unread futures using \(\text{anyUnread} = \neg \text{all}([F.\text{Read}]) \).

If the element of \(F \) which has become finished encountered an error during execution, that error will be thrown by \(\text{fetchNext} \). However, that future's 'Read' property is set true, so that any subsequent calls to \(\text{fetchNext} \) can proceed.

Examples

Request several function evaluations, and update a progress bar while waiting for completion.

\[
\begin{align*}
N &= 100; \\
\text{for idx} &= N: -1: 1 \\
\quad &\quad \% \text{Compute the rank of N magic squares} \\
\quad &\quad \quad F(idx) = \text{parfeval}(@\text{rank}, 1, \text{magic}(idx)); \\
\text{end} \\
\quad &\quad \% \text{Build a waitbar to track progress} \\
\quad &\quad h = \text{waitbar}(0, 'Waiting for FevalFutures to complete...'); \\
\quad &\quad \text{results} = \text{zeros}(1, N); \\
\text{for idx} &= 1: N \\
\quad &\quad [\text{completedIdx}, \text{thisResult}] = \text{fetchNext}(F); \\
\quad &\quad \% \text{store the result}
\end{align*}
\]

11-102
results(completedIdx) = thisResult;
% update waitbar
 waitbar(idx/N,h,sprintf('Latest result: %d',thisResult));
end
delete(h)

See Also
 fetchOutputs | parfeval | parfevalOnAll | parpool
fetchOutputs (job)

Purpose
Retrieves output arguments from all tasks in job.

Syntax
```matlab
data = fetchOutputs(job)
```

Description
data = fetchOutputs(job) retrieves the output arguments contained in the tasks of a finished job. If the job has M tasks, each row of the M-by-N cell array `data` contains the output arguments for the corresponding task in the job. Each row has N elements, where N is the greatest number of output arguments from any one task in the job. The N elements of a row are arrays containing the output arguments from that task. If a task has less than N output arguments, the excess arrays in the row for that task are empty. The order of the rows in `data` is the same as the order of the tasks contained in the job’s Tasks property.

Calling `fetchOutputs` does not remove the output data from the location where it is stored. To remove the output data, use the `delete` function to remove individual tasks or entire jobs.

`fetchOutputs` reports an error if the job is not in the 'finished' state, or if one of its tasks encountered an error during execution. If some tasks completed successfully, you can access their output arguments directly from the `OutputArguments` property of the tasks.

Examples
Create a job to generate a random matrix:

```matlab
myCluster = parcluster; % Use default profile
j = createJob(myCluster, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);

wait(j)
data = fetchOutputs(j);
data{1}
```
fetchOutputs (FevalFuture)

Purpose
Retrieve all output arguments from FevalFuture

Syntax
[B1,B2,...,Bn] = fetchOutputs(F)
[B1,B2,...,Bn] = fetchOutputs(F,'UniformOutput',false)

Description
[B1,B2,...,Bn] = fetchOutputs(F) fetches all outputs of FevalFuture F after first waiting for each element of F to reach the state 'finished'. An error results if any element of F has NumOutputArguments less than the requested number of outputs.

When F is a vector of FevalFutures, each output argument is formed by concatenating the corresponding output arguments from each future in F. An error results if these outputs cannot be concatenated. To avoid this error, set the 'UniformOutput' option to false.

[B1,B2,...,Bn] = fetchOutputs(F,'UniformOutput',false) requests that fetchOutputs combine the future outputs into cell arrays B1,B2,...,Bn. The outputs of F can be of any size or type.

After the call to fetchOutputs, all FevalFutures in F have their 'Read' property set to true. fetchOutputs returns outputs for all FevalFutures in F regardless of the value of each future's 'Read' property.

Examples
Create an FevalFuture, and fetch its outputs.

f = parfeval(@rand,1,3);
R = fetchOutputs(f)

0.5562 0.6218 0.3897
0.0084 0.4399 0.2700
0.0048 0.9658 0.8488

Create an FevalFuture vector, and fetch all its outputs.

for idx = 1:10
 F(idx) = parfeval(@rand,1,1,10); % One row each future
end
R = fetchOutputs(F); % 10-by-10 concatenated output
See Also

fetchNext | parfeval | parpool
Purpose
Evaluate kernel on GPU

Syntax
feval(KERN, x1, ..., xn)
[y1, ..., ym] = feval(KERN, x1, ..., xn)

Description
feval(KERN, x1, ..., xn) evaluates the CUDA kernel KERN with
the given arguments x1, ..., xn. The number of input arguments,
n, must equal the value of the NumRHSArguments property of KERN, and
their types must match the description in the ArgumentTypes property
of KERN. The input data can be regular MATLAB data, GPU arrays, or a
mixture of the two.

[y1, ..., ym] = feval(KERN, x1, ..., xn) returns multiple
output arguments from the evaluation of the kernel. Each output
argument corresponds to the value of the non-const pointer inputs to
the CUDA kernel after it has executed. The output from feval running
a kernel on the GPU is always gpuArray type, even if all the inputs are
data from the MATLAB workspace. The number of output arguments, m,
must not exceed the value of the MaxNumLHSArguments property of KERN.

Examples
If the CUDA kernel within a CU file has the following signature:

void myKernel(const float * pIn, float * pInOut1, float * pInOut2)

The corresponding kernel object in MATLAB then has the properties:

MaxNumLHSArguments: 2
NumRHSArguments: 3
ArgumentTypes: {'in single vector' ...
 'inout single vector' 'inout single vector'}

You can use feval on this code’s kernel (KERN) with the syntax:

[y1, y2] = feval(KERN, x1, x2, x3)

The three input arguments, x1, x2, and x3, correspond to the three
arguments that are passed into the CUDA function. The output
arguments, y1 and y2, are gpuArray types, and correspond to the values of pIn0ut1 and pIn0ut2 after the CUDA kernel has executed.

See Also
arrayfun | gather | gpuArray | parallel.gpu.CUDAKernel
Purpose
Find job objects stored in cluster

Syntax
out = findJob(c)
[pending queued running completed] = findJob(c)
out = findJob(c,'p1',v1,'p2',v2,...)

Arguments
c Cluster object in which to find the job.
pending Array of jobs whose State is pending in cluster c.
queued Array of jobs whose State is queued in cluster c.
running Array of jobs whose State is running in cluster c.
completed Array of jobs that have completed running, i.e., whose State is finished or failed in cluster c.
out Array of jobs found in cluster c.
p1, p2 Job object properties to match.
v1, v2 Values for corresponding object properties.

Description
out = findJob(c) returns an array, out, of all job objects stored in the cluster c. Jobs in the array are ordered by the ID property of the jobs, indicating the sequence in which they were created.

[pending queued running completed] = findJob(c) returns arrays of all job objects stored in the cluster c, by state. Within pending, running, and completed, the jobs are returned in sequence of creation. Jobs in the array queued are in the order in which they are queued, with the job at queued(1) being the next to execute. The completed jobs include those that failed. Jobs that are deleted or whose status is unavailable are not returned by this function.
out = findJob(c,'p1',v1,'p2',v2,...) returns an array, out, of job objects whose property values match those passed as property-value pairs, \(p1, v1, p2, v2, \) etc. The property name must be in the form of a string, with the value being the appropriate type for that property. For a match, the object property value must be exactly the same as specified, including letter case. For example, if a job’s Name property value is MyJob, then findJob will not find that object while searching for a Name property value of myJob.

See Also
createJob | findTask | parcluster | submit
Purpose
Task objects belonging to job object

Syntax
\[
tasks = \text{findTask}(j) \\
[pending \ running \ completed] = \text{findTask}(j) \\
tasks = \text{findTask}(j,'p1',v1,'p2',v2,...)
\]

Arguments
- **j**: Job object.
- **tasks**: Returned task objects.
- **pending**: Array of tasks in job object whose State is pending.
- **running**: Array of tasks in job object whose State is running.
- **completed**: Array of completed tasks in job object, i.e., those whose State is finished or failed.
- **p1, p2**: Task object properties to match.
- **v1, v2**: Values for corresponding object properties.

Description
tasks = findTask(j) gets a 1-by-N array of task objects belonging to a job object j. Tasks in the array are ordered by the ID property of the tasks, indicating the sequence in which they were created.

[pending running completed] = findTask(j) returns arrays of all task objects stored in the job object j, sorted by state. Within each array (pending, running, and completed), the tasks are returned in sequence of creation.

tasks = findTask(j,'p1',v1,'p2',v2,...) returns an array of task objects belonging to a job object j. The returned task objects will be only those matching the specified property-value pairs, p1, v1, p2, v2, etc. The property name must be in the form of a string, with the value being the appropriate type for that property. For a match, the object property value must be exactly the same as specified, including letter case. For example, if a task’s Name property value is MyTask, then
findTask will not find that object while searching for a Name property value of mytask.

Tips

If job j is contained in a remote service, findTask will result in a call to the remote service. This could result in findTask taking a long time to complete, depending on the number of tasks retrieved and the network speed. Also, if the remote service is no longer available, an error will be thrown.

Examples

Create a job object.

```matlab
c = parcluster();
j = createJob(c);
```

Add a task to the job object.

```matlab
createTask(j, @rand, 1, {10})
```

Find all task objects now part of job j.

```matlab
t = findTask(j)
```

See Also

createJob | createTask | findJob
Purpose
for-loop over distributed range

Syntax
FOR variable = drange(colonop)
 statement
 ...
 statement
end

Description
The general format is
FOR variable = drange(colonop)
 statement
 ...
 statement
end

The colonop is an expression of the form start:increment:finish or start:finish. The default value of increment is 1. The colonop is partitioned by codistributed.colon into numlabs contiguous segments of nearly equal length. Each segment becomes the iterator for a conventional for-loop on an individual worker.

The most important property of the loop body is that each iteration must be independent of the other iterations. Logically, the iterations can be done in any order. No communication with other workers is allowed within the loop body. The functions that perform communication are gop, gcat, gplus, codistributor, codistributed, gather, and redistribute.

It is possible to access portions of codistributed arrays that are local to each worker, but it is not possible to access other portions of codistributed arrays.

The break statement can be used to terminate the loop prematurely.
Examples

Find the rank of magic squares. Access only the local portion of a codistributed array.

```matlab
r = zeros(1, 40, codistributor());
for n = drange(1:40)
    r(n) = rank(magic(n));
end
r = gather(r);
```

Perform Monte Carlo approximation of pi. Each worker is initialized to a different random number state.

```matlab
m = 10000;
for p = drange(1:numlabs)
    z = rand(m, 1) + i*rand(m, 1);
    c = sum(abs(z) < 1)
end
k = gplus(c)
p = 4*k/(m*numlabs);
```

Attempt to compute Fibonacci numbers. This will *not* work, because the loop bodies are dependent.

```matlab
f = zeros(1, 50, codistributor());
f(1) = 1;
f(2) = 2;
for n = drange(3:50)
    f(n) = f(n - 1) + f(n - 2)
end
```

See Also

for | numlabs | parfor
Purpose
Transfer distributed array data or gpuArray to local workspace

Syntax

```plaintext
X = gather(A)
X = gather(C, lab)
```

Description

`X = gather(A)` can operate inside an `spmd` statement, pmode, or parallel job to gather together the data of a codistributed array, or outside an `spmd` statement to gather the data of a distributed array. If you execute this inside an `spmd` statement, pmode, or parallel job, `X` is a replicated array with all the data of the array on every worker. If you execute this outside an `spmd` statement, `X` is an array in the local workspace, with the data transferred from the multiple workers.

`X = gather(distributed(X))` or `X = gather(codistributed(X))` returns the original array `X`.

`X = gather(C, lab)` converts a codistributed array `C` to a variant array `X`, such that all of the data is contained on worker `lab`, and `X` is a 0-by-0 empty double on all other workers.

For a gpuArray input, `X = gather(A)` transfers the data from the GPU to the local workspace.

If the input argument to `gather` is not a distributed, a codistributed, or a gpuArray, the output is the same as the input.

Tips

Note that `gather` assembles the codistributed or distributed array in the workspaces of all the workers on which it executes, or on the MATLAB client, respectively, but not both. If you are using `gather` within an `spmd` statement, the gathered array is accessible on the client via its corresponding `Composite` object; see “Access Worker Variables with Composites” on page 3-6. If you are running `gather` in a parallel job, you can return the gathered array to the client as an output argument from the task.

As the `gather` function requires communication between all the workers, you cannot gather data from all the workers onto a single worker by placing the function inside a conditional statement such as `if labindex == 1`.

11-115
Distribute a magic square across your workers, then gather the whole matrix onto every worker and then onto the client. This code results in the equivalent of \(M = \text{magic}(n) \) on all workers and the client.

\begin{verbatim}
n = 10;
spmd
 C = codistributed(magic(n));
 M = gather(C) \% Gather data on all workers
end
S = gather(C) \% Gather data on client
\end{verbatim}

Gather all of the data in \(C \) onto worker 1, for operations that cannot be performed across distributed arrays.

\begin{verbatim}
n = 10;
spmd
 C = codistributed(magic(n));
 out = gather(C, 1);
 if labindex == 1
 \% Characteristic sum for this magic square:
 characteristicSum = sum(1:n^2)/n;
 \% Ensure that the diagonal sums are equal to the
 \% characteristic sum:
 areDiagonalsEqual = isequal ...
 (trace(out), trace(flipud(out)), characteristicSum)
 end
end
Lab 1:
 areDiagonalsEqual =
 1
\end{verbatim}

Gather all of the data from a distributed array into \(D \) on the client.

\begin{verbatim}
n = 10;
D = distributed(magic(n)); \% Distribute data to workers
M = gather(D) \% Return data to client
\end{verbatim}

Gather the results of a GPU operation to the local workspace.
G = gpuArray(rand(1024,1));
F = sqrt(G); % input and output both gpuArray
W = gather(G); % Return data to client
whos
Name Size Bytes Class
F 1024x1 108 gpuArray
G 1024x1 108 gpuArray
W 1024x1 8192 double

See Also
arrayfun | codistributed | distributed | gpuArray | pmode
Purpose
Global concatenation

Syntax
- \(Xs = \text{gcat}(X) \)
- \(Xs = \text{gcat}(X, \ dim) \)
- \(Xs = \text{gcat}(X, \ dim, \ targetlab) \)

Description
- \(Xs = \text{gcat}(X) \) concatenates the variant array \(X \) from each worker in the second dimension. The result is replicated on all workers.
- \(Xs = \text{gcat}(X, \ dim) \) concatenates the variant array \(X \) from each worker in the dimension indicated by \(\dim \).
- \(Xs = \text{gcat}(X, \ dim, \ targetlab) \) performs the reduction, and places the result into \(\text{res} \) only on the worker indicated by \(\text{targetlab} \). \(\text{res} \) is set to [] on all other workers.

Examples
With four workers,
- \(Xs = \text{gcat}(ext{labindex}) \)

returns \(Xs = [1 \ 2 \ 3 \ 4] \) on all four workers.

See Also
- cat | gop | labindex | numlabs
Purpose
Get current parallel pool

Syntax
p = gcp
p = gcp('nocreate')

Description
p = gcp returns a parallel.Pool object representing the current parallel pool. The current pool is where parallel language features execute, such as parfor, spmd, distributed, Composite, parfeval and parfevalOnAll.

If no parallel pool exists, gcp starts a new parallel pool and returns a pool object for that, unless automatic pool starts are disabled in your parallel preferences. If no parallel pool exists and automatic pool starts are disabled, gcp returns an empty pool object.

p = gcp('nocreate') returns the current pool if one exists. If no pool exists, the 'nocreate' option causes gcp not to create a pool, regardless of your parallel preferences settings.

Examples
Find Size of Current Pool
Find the number of workers in the current parallel pool.

p = gcp('nocreate'); % If no pool, do not create new one.
if isempty(p)
 poolsize = 0;
else
 poolsize = p.NumWorkers
end

Delete Current Pool
Use the parallel pool object to delete the current pool.

delete(gcp('nocreate'))

See Also
Composite | delete | distributed | parfeval | parfevalOnAll | parfor | parpool | spmd
getAttachedFilesFolder

Purpose
Folder into which AttachedFiles are written

Syntax
```matlab
folder = getAttachedFilesFolder
```

Arguments
- `folder`
 String indicating location where files from job's AttachedFiles property are placed

Description
`folder = getAttachedFilesFolder` returns a string, which is the path to the local folder into which AttachedFiles are written. This function returns an empty array if it is not called on a MATLAB worker.

Examples
Find the current AttachedFiles folder.
```matlab
folder = getAttachedFilesFolder;
```
Change to that folder to invoke an executable that was included in AttachedFiles.
```matlab
oldFolder = cd(folder);
```
Invoke the executable.
```matlab
[OK, output] = system('myexecutable');
```
Change back to the original folder.
```matlab
cd(oldfolder);
```

See Also
- `getCurrentCluster`
- `getCurrentJob`
- `getCurrentTask`
- `getCurrentWorker`
Purpose
Codistributor object for existing codistributed array

Syntax
codist = get Codistributor(D)

Description
codist = get Codistributor(D) returns the codistributor object of codistributed array D. Properties of the object are Dimension and Partition for 1-D distribution; and BlockSize, LabGrid, and Orientation for 2-D block cyclic distribution. For any one codistributed array, get Codistributor returns the same values on all workers. The returned codistributor object is complete, and therefore suitable as an input argument for codistributed.build.

Examples
Get the codistributor object for a 1-D codistributed array that uses default distribution on 4 workers:

```
spmd (4)
    I1 = codistributed.eye(64, codistributor1d());
    codist1 = get Codistributor(I1)
    dim = codist1.Dimension
    partn = codist1.Partition
end
```

Get the codistributor object for a 2-D block cyclic codistributed array that uses default distribution on 4 workers:

```
spmd (4)
    I2 = codistributed.eye(128, codistributor2dbc());
    codist2 = get Codistributor(I2)
    blocksz = codist2.BlockSize
    partn = codist2.LabGrid
    ornt = codist2.Orientation
end
```

Demonstrate that these codistributor objects are complete:

```
spmd (4)
    is Complete (codist1)
```
getCodistributor

```matlab
isComplete(codist2)
end
```

See Also
codistributed | codistributed.build | getLocalPart | redistribute
getCurrentCluster

Purpose
Cluster object that submitted current task

Syntax
\[c = \text{getCurrentCluster} \]

Arguments
\(c \) The cluster object that scheduled the task currently being evaluated by the worker session.

Description
\(c = \text{getCurrentCluster} \) returns the \text{parallel.Cluster} object that has sent the task currently being evaluated by the worker session. Cluster object \(c \) is the Parent of the task's parent job.

Tips
If this function is executed in a MATLAB session that is not a worker, you get an empty result.

Examples
Find the current cluster.

\[
\text{myCluster} = \text{getCurrentCluster};
\]

Get the host on which the cluster is running.

\[
\text{host} = \text{myCluster}.\text{Host};
\]

See Also
\text{getAttachedFilesFolder} | \text{getCurrentJob} | \text{getCurrentTask} | \text{getCurrentWorker}
Purpose
Job object whose task is currently being evaluated

Syntax
```
job = getCurrentJob
```

Arguments
- **job**
 The job object that contains the task currently being evaluated by the worker session.

Description
```
job = getCurrentJob returns the Parallel.Job object that is the Parent of the task currently being evaluated by the worker session.
```

Tips
If the function is executed in a MATLAB session that is not a worker, you get an empty result.

See Also
- getAttachedFilesFolder
- getCurrentCluster
- getCurrentTask
- getCurrentWorker

11-124
Purpose
Task object currently being evaluated in this worker session

Syntax
```
task = getCurrentTask
```

Arguments
- **task**
 The task object that the worker session is currently evaluating.

Description
`task = getCurrentTask` returns the `Parallel.Task` object whose function is currently being evaluated by the MATLAB worker session on the cluster.

Tips
If the function is executed in a MATLAB session that is not a worker, you get an empty result.

See Also
- `getAttachedFilesFolder`
- `getCurrentCluster`
- `getCurrentJob`
- `getCurrentWorker`
Purpose
Worker object currently running this session

Syntax
worker = getCurrentWorker

Arguments
worker The worker object that is currently evaluating the task that contains this function.

Description
worker = getCurrentWorker returns the Parallel.Worker object representing the MATLAB worker session that is currently evaluating the task function that contains this call.

Tips
If the function runs in a MATLAB session that is not a worker, it returns an empty result.

Examples
Create a job with one task, and have the task return the worker that evaluates it. Then view the Host property of the worker:

```matlab
c = parcluster();
j = createJob(c);
t = createTask(j, @getCurrentWorker, 1, {});
submit(j)
wait(j)
w = t.OutputArguments{1};
h = w.Host
```

The task t executes getCurrentWorker to get an object representing the worker that is evaluating the task. The result is placed in the OutputArguments property of the task.

Create a task to return only the Host property value of its worker:

```matlab
c = parcluster();
j = createJob(c);
t = createTask(j, @( ) get(getCurrentWorker,'Host'), 1, {});
submit(j)
wait(j)
```
h = t.OutputArguments{1}

This code defines a task to run an anonymous function, which uses `get` to view the `Host` property of the worker object returned by `getCurrentWorker`. So only the `Host` property value is available in the `OutputArguments` property.

See Also
- `getAttachedFilesFolder`
- `getCurrentCluster`
- `getCurrentJob`
- `getCurrentTask`
getDebugLog

Purpose
Read output messages from job run in CJS cluster

Syntax
str = getDebugLog(cluster, job_or_task)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>str</td>
<td>Variable to which messages are returned as a string expression.</td>
</tr>
<tr>
<td>cluster</td>
<td>Cluster object referring to mpiexec, Microsoft Windows HPC Server (or CCS), Platform LSF, PBS Pro, or TORQUE cluster, created by parcluster.</td>
</tr>
<tr>
<td>job_or_task</td>
<td>Object identifying job or task whose messages you want.</td>
</tr>
</tbody>
</table>

Description
str = getDebugLog(cluster, job_or_task) returns any output written to the standard output or standard error stream by the job or task identified by job_or_task, being run in the cluster identified by cluster. You cannot use this function to retrieve messages from a task in an mpiexec cluster.

Examples
Construct a cluster object so you can create a communicating job. Assume that you have already defined a profile called mpiexec to define the properties of the cluster.

```matlab
mpiexecObj = parcluster('mpiexec');
```

Create and submit a parallel job.

```matlab
job = createCommunicatingJob(mpiexecObj); createTask(job, @labindex, 1, {}); submit(job);
```

Look at the debug log.

```matlab
getDebugLog(mpiexecObj, job);
```
See Also

createCommunicatingJob | createJob | createTask | parcluster
getJobClusterData

Purpose
Get specific user data for job on generic cluster

Syntax
```
userdata = getJobClusterData(cluster, job)
```

Arguments
- `userdata` Information that was previously stored for this job
- `cluster` Cluster object identifying the generic third-party cluster running the job
- `job` Job object identifying the job for which to retrieve data

Description
`userdata = getJobClusterData(cluster, job)` returns data stored for the job `job` that was derived from the generic cluster `cluster`. The information was originally stored with the function `setJobClusterData`. For example, it might be useful to store the third-party scheduler’s external ID for this job, so that the function specified in `GetJobStateFcn` can later query the scheduler about the state of the job.

To use this feature, you should call the function `setJobClusterData` in the submit function (identified by the `IndependentSubmitFcn` or `CommunicatingSubmitFcn` property) and call `getJobClusterData` in any of the functions identified by the properties `GetJobStateFcn`, `DeleteJobFcn`, `DeleteTaskFcn`, `CancelJobFcn`, or `CancelTaskFcn`.

For more information and examples on using these functions and properties, see “Manage Jobs with Generic Scheduler” on page 7-38.

See Also
`setJobClusterData`
Purpose
Folder on client where jobs are stored

Syntax
```matlab
joblocation = getJobFolder(cluster, job)
```

Description
`joblocation = getJobFolder(cluster, job)` returns the path to the folder on disk where files are stored for the specified job and cluster. This folder is valid only the client MATLAB session, not necessarily the workers. This method exists only on clusters using the generic interface.

See Also
`getJobFolderOnCluster` | `parcluster`
getJobFolderOnCluster

Purpose
Folder on cluster where jobs are stored

Syntax
`joblocation = getJobFolderOnCluster(cluster,job)`

Description
`joblocation = getJobFolderOnCluster(cluster,job)` returns the path to the folder on disk where files are stored for the specified job and cluster. This folder is valid only in worker MATLAB sessions. An error results if the `HasSharedFilesystem` property of the cluster is `false`. This method exists only on clusters using the generic interface.

See Also
getJobFolder | parcluster
Purpose
Local portion of codistributed array

Syntax
L = getLocalPart(A)

Description
L = getLocalPart(A) returns the local portion of a codistributed array.

Examples
With four workers,

A = magic(4); %replicated on all workers
D = codistributed(A, codistributor1d(1));
L = getLocalPart(D)

returns

Lab 1: L = [16 2 3 13]
Lab 2: L = [5 11 10 8]
Lab 3: L = [9 7 6 12]
Lab 4: L = [4 14 15 1]

See Also
codistributed | codistributor
getLogLocation

Purpose
Log location for job or task

Syntax
```plaintext
logfile = getLogLocation(cluster,cj)
logfile = getLogLocation(cluster,it)
```

Description
`logfile = getLogLocation(cluster,cj)` for a generic cluster
cluster and communicating job `cj`, returns the location where the log
data should be stored for the whole job `cj`.

`logfile = getLogLocation(cluster,it)` for a generic cluster
cluster and task `it` of an independent job returns the location where
the log data should be stored for the task `it`.

This function can be useful during submission, to instruct the
third-party cluster to put worker output logs in the correct location.

See Also
parcluster
Purpose
Global indices for local part of codistributed array

Syntax

\begin{verbatim}
K = globalIndices(R, dim)
K = globalIndices(R, dim, lab)
[E,F] = globalIndices(R, dim)
[E,F] = globalIndices(R, dim, lab)
K = codist.globalIndices(dim, lab)
[E,F] = codist.globalIndices(dim, lab)
\end{verbatim}

Description
globalIndices tell you the relationship between indices on a local part and the corresponding index range in a given dimension on the distributed array. The globalIndices method on a codistributor object allows you to get this relationship without actually creating the array.

\begin{verbatim}
K = globalIndices(R, dim) or K = globalIndices(R, dim, lab)
\end{verbatim}
returns a vector \(K \) so that getLocalPart(R) = \(R(...,K,...) \) in the specified dimension \(\text{dim} \) on the specified worker. If the \(\text{lab} \) argument is omitted, the default is \(\text{labindex} \).

\begin{verbatim}
[E,F] = globalIndices(R, dim) or [E,F] = globalIndices(R, dim, lab)
\end{verbatim}
returns two integers \(E \) and \(F \) so that getLocalPart(R) = \(R(...,E:F,...) \) in the specified dimension \(\text{dim} \) on the specified worker. If the \(\text{lab} \) argument is omitted, the default is \(\text{labindex} \).

\begin{verbatim}
K = codist.globalIndices(dim, lab)
\end{verbatim}
is the same as \(K = \) globalIndices(R, dim, lab), where codist is the codistributor for \(R \), or \(\text{codist} = \text{getCodistributor}(R) \). This allows you to get the global indices for a codistributed array without having to create the array itself.

\begin{verbatim}
[E,F] = codist.globalIndices(dim, lab)
\end{verbatim}
is the same as \([E,F] = \) globalIndices(R, dim, lab), where codist is the codistributor for \(R \), or \(\text{codist} = \text{getCodistributor}(R) \). This allows you to get the global indices for a codistributed array without having to create the array itself.

Examples
Create a 2-by-22 codistributed array among four workers, and view the global indices on each lab:
spmd
 C = codistributed.zeros(2, 22, codistributor1d(2,[6 6 5 5]));
 if labindex == 1
 K = globalIndices(C, 2); % returns K = 1:6.
 elseif labindex == 2
 [E,F] = globalIndices(C, 2); % returns E = 7, F = 12.
 end
 K = globalIndices(C, 2, 3); % returns K = 13:17.
 [E,F] = globalIndices(C, 2, 4); % returns E = 18, F = 22.
end

Use globalIndices to load data from a file and construct a codistributed array distributed along its columns, i.e., dimension 2. Notice how globalIndices makes the code not specific to the number of workers and alleviates you from calculating offsets or partitions.

spmd
 siz = [1000, 1000];
 codistr = codistributor1d(2, [], siz);

 % Use globalIndices to figure out which columns
 % each worker should load.
 [firstCol, lastCol] = codistr.globalIndices(2);

 % Call user-defined function readRectangleFromFile to
 % load all the values that should go into
 % the local part for this worker.
 labLocalPart = readRectangleFromFile(fileName, ...
 1, siz(1), firstCol, lastCol);

 % With the local part and codistributor,
 % construct the corresponding codistributed array.
 C = codistributed.build(labLocalPart, codistr);
end

See Also
getLocalPart | labindex
Purpose
Global operation across all workers

Syntax

```
res = gop(@F, x)
res = gop(@F, x, targetlab)
```

Arguments

- **F**
 Function to operate across workers.
- **x**
 Argument to function F, should be same variable on all workers, but can have different values.
- **res**
 Variable to hold reduction result.
- **targetlab**
 Lab to which reduction results are returned.

Description

`res = gop(@F, x)` is the reduction via the function F of the quantities `x` from each worker. The result is duplicated on all workers.

The function `F(x, y)` should accept two arguments of the same type and produce one result of that type, so it can be used iteratively, that is,

```
F(F(x1, x2), F(x3, x4))
```

The function F should be associative, that is,

```
F(F(x1, x2), x3) = F(x1, F(x2, x3))
```

`res = gop(@F, x, targetlab)` performs the reduction, and places the result into `res` only on the worker indicated by `targetlab`. `res` is set to `[]` on all other workers.

Examples

Calculate the sum of all workers’ value for `x`.

```
res = gop(@plus, x)
```

Find the maximum value of `x` among all the workers.

```
res = gop(@max, x)
```
Perform the horizontal concatenation of \(x \) from all workers.

\[
\text{res} = \text{gop}(@\text{horzcat}, x)
\]

Calculate the 2-norm of \(x \) from all workers.

\[
\text{res} = \text{gop}(@\text{a1,a2}\text{norm}([\text{a1 a2}]), x)
\]

See Also

labBarrier | numlabs
Purpose
Global addition

Syntax

\[
S = \text{gplus}(X) \\
S = \text{gplus}(X, \text{targetlab})
\]

Description

\[
S = \text{gplus}(X)
\]
returns the addition of the variant array \(X\) from each worker. The result \(S\) is replicated on all workers.

\[
S = \text{gplus}(X, \text{targetlab})
\]
performs the addition, and places the result into \(S\) only on the worker indicated by \(\text{targetlab}\). \(S\) is set to [] on all other workers.

Examples

With four workers,

\[
S = \text{gplus}(ext{labindex})
\]

returns \(S = 1 + 2 + 3 + 4 = 10\) on all four workers.

See Also
gop | labindex
Purpose
Create array on GPU

Syntax
\[G = \text{gpuArray}(X) \]

Description
\(G = \text{gpuArray}(X) \) copies the numeric data \(X \) to the GPU, and returns a gpuArray object. You can operate on this data by passing it to the `feval` method of a CUDA kernel object, or by using one of the methods defined for gpuArray objects in “Establish Arrays on a GPU” on page 9-3.

The MATLAB data \(X \) must be numeric (for example: `single`, `double`, `int8`, etc.) or logical, and the GPU device must have sufficient free memory to store the data. \(X \) must be a full matrix, not sparse.

If the input argument is already a gpuArray, the output is the same as the input.

Examples
Transfer a 10-by-10 matrix of random single-precision values to the GPU, then use the GPU to square each element.

\[
X = \text{rand}(10, 'single'); \\
G = \text{gpuArray}(X); \\
\text{classUnderlying}(G) \quad \% \text{Returns 'single'} \\
G2 = G .* G; \quad \% \text{Performed on GPU} \\
\text{whos G2} \quad \% \text{Result on GPU}
\]

See Also
arrayfun | bsxfun | existsOnGPU | feval | gather | parallel.gpu.CUDAKernel | reset
Purpose
Query or select GPU device

Syntax

- \(D = \text{gpuDevice} \)
- \(D = \text{gpuDevice}() \)
- \(D = \text{gpuDevice}(\text{IDX}) \)
- \(\text{gpuDevice}([]) \)

Description
- \(D = \text{gpuDevice} \) or \(D = \text{gpuDevice}() \), if no device is already selected, selects the default GPU device and returns an object representing that device. If a GPU device is already selected, this returns an object representing that device without clearing it.

- \(D = \text{gpuDevice}(\text{IDX}) \) selects the GPU device specified by index \(\text{IDX} \). \(\text{IDX} \) must be in the range of 1 to \(\text{gpuDeviceCount} \). A warning or error might occur if the specified GPU device is not supported. This form of the command with a specified index resets the device and clears its memory (even if this device is already currently selected, equivalent to \(\text{reset} \)); so all workspace variables representing \(\text{gpuArray} \) or \(\text{CUDA} \) data are now invalid, and you should clear them from the workspace or redefine them.

- \(\text{gpuDevice}([]) \), with an empty argument (as opposed to no argument), deselects the GPU device and clears its memory of \(\text{gpuArray} \) and \(\text{CUDA} \) data. This leaves no GPU device selected as the current device.

Examples
Create an object representing the default GPU device.

\[
g = \text{gpuDevice}
\]

Query the compute capabilities of all available GPU devices.

\[
\text{for } ii = 1: \text{gpuDeviceCount}
\quad g = \text{gpuDevice}(ii);
\quad \text{fprintf}(1, 'Device %i has ComputeCapability %s \n', ...
\quad \quad g.Index, g.ComputeCapability)
\text{end}
\]
See Also
arrayfun | feval | gpuDeviceCount | parallel.gpu.CUDAKernel | reset
gpuDeviceCount

Purpose
Number of GPU devices present

Syntax
\[
\text{n = } \text{gpuDeviceCount}
\]

Description
\[
\text{n = gpuDeviceCount} \text{ returns the number of GPU devices present in your computer.}
\]

Examples
Determine how many GPU devices you have available in your computer and examine the properties of each.

\[
\begin{align*}
\text{n = gpuDeviceCount;} \\
\text{for ii = 1:n} \\
\quad \text{gpuDevice(ii)} \\
\text{end}
\end{align*}
\]

See Also
arrayfun | feval | gpuDevice | parallel.gpu.CUDAKernel
gputimeit

Purpose
Time required to run function on GPU

Syntax
\[
\begin{align*}
t &= \text{gputimeit}(F) \\
t &= \text{gputimeit}(F,N)
\end{align*}
\]

Description
\(t = \text{gputimeit}(F)\) measures the typical time (in seconds) required to run the function specified by the function handle \(F\). The function handle accepts no external input arguments, but can be defined with input arguments to its internal function call.

\(t = \text{gputimeit}(F,N)\) calls \(F\) to return \(N\) output arguments. By default, \(\text{gputimeit}\) calls the function \(F\) with one output argument, or no output arguments if \(F\) does not return any output.

Tips
\(\text{gputimeit}\) is preferable to \(\text{timeit}\) for functions that use the GPU, because it ensures that all operations on the GPU have finished before recording the time and compensates for the overhead. For operations that do not use a GPU, \(\text{timeit}\) offers greater precision.

Note the following limitations:
- The function \(F\) should not call \(\text{tic}\) or \(\text{toc}\).
- You cannot use \(\text{tic}\) and \(\text{toc}\) to measure the execution time of \(\text{gputimeit}\) itself.

Examples
Measure the time to calculate \(\text{sum}(A.' .* B, 1)\) on a GPU, where \(A\) is a 12000-by-400 matrix and \(B\) is 400-by-12000.

\[
\begin{align*}
A &= \text{gpuArray.rand}(12000,400) \\
B &= \text{gpuArray.rand}(400,12000) \\
f &= @() \text{sum}(A.' .* B, 1) \\
t &= \text{gputimeit}(f)
\end{align*}
\]

0.0026

Compare the time to run \(\text{svd}\) on a GPU, with one versus three output arguments.
X = gpuArray.rand(1000);
f = @() svd(X);
t3 = gputimeit(f,3)

1.5262

t1 = gputimeit(f,1)

0.4304

See Also
gpuArray | wait
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Help for toolbox functions in Command Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>help class/function</code></td>
</tr>
<tr>
<td>Arguments</td>
<td><code>class</code> A Parallel Computing Toolbox object class: distcomp.jobmanager, distcomp.job, or distcomp.task.</td>
</tr>
<tr>
<td></td>
<td><code>function</code> A function for the specified class. To see what functions are available for a class, see the <code>methods</code> reference page.</td>
</tr>
<tr>
<td>Description</td>
<td><code>help class/function</code> returns command-line help for the specified function of the given class.</td>
</tr>
<tr>
<td></td>
<td>If you do not know the class for the function, use <code>class(obj)</code>, where <code>function</code> is of the same class as the object <code>obj</code>.</td>
</tr>
<tr>
<td>Examples</td>
<td>Get help on functions from each of the Parallel Computing Toolbox object classes.</td>
</tr>
<tr>
<td></td>
<td><code>help distcomp.jobmanager/createJob</code></td>
</tr>
<tr>
<td></td>
<td><code>help distcomp.job/cancel</code></td>
</tr>
<tr>
<td></td>
<td><code>help distcomp.task/waitForState</code></td>
</tr>
<tr>
<td></td>
<td><code>class(j1)</code></td>
</tr>
<tr>
<td></td>
<td><code>ans = distcomp.job</code></td>
</tr>
<tr>
<td></td>
<td><code>help distcomp.job/createTask</code></td>
</tr>
<tr>
<td>See Also</td>
<td><code>methods</code></td>
</tr>
</tbody>
</table>
Purpose
True if distributed array's underlying elements are of specified class

Syntax

```
TF = isaUnderlying(D, 'classname')
```

Description

`TF = isaUnderlying(D, 'classname')` returns true if the elements of distributed or codistributed array `D` are either an instance of `classname` or an instance of a class derived from `classname`. `isaUnderlying` supports the same values for `classname` as the MATLAB `isa` function does.

Examples

```matlab
N = 1000;
D_uint8 = distributed.ones(1, N, 'uint8');
D_cell = distributed.cell(1, N);
isUint8 = isaUnderlying(D_uint8, 'uint8') % returns true
isDouble = isaUnderlying(D_cell, 'double') % returns false
```

See Also
isa
iscodistributed

Purpose
True for codistributed array

Syntax

\[tf = \text{iscodistributed}(X) \]

Description

\(tf = \text{iscodistributed}(X) \) returns true for a codistributed array, or false otherwise. For a description of codistributed arrays, see “Nondistributed Versus Distributed Arrays” on page 5-2.

Examples
With an open parallel pool,

```matlab
spmd
    L = ones(100, 1);
    D = codistributed.ones(100, 1);
    iscodistributed(L) \% returns false
    iscodistributed(D) \% returns true
end
```

See Also
isdistributed
Purpose
True if codistributor object is complete

Syntax
```
tf = isComplete(codist)
```

Description
```
tf = isComplete(codist) returns true if codist is a completely defined codistributor, or false otherwise. For a description of codistributed arrays, see “Nondistributed Versus Distributed Arrays” on page 5-2.
```

See Also
codistributed | codistributor
Purpose

True for distributed array

Syntax

tf = isdistributed(X)

Description

tf = isdistributed(X) returns true for a distributed array, or false otherwise. For a description of a distributed array, see “Nondistributed Versus Distributed Arrays” on page 5-2.

Examples

With an open parallel pool,

L = ones(100, 1);
D = distributed.ones(100, 1);
isdistributed(L) % returns false
isdistributed(D) % returns true

See Also

iscodistributed
Purpose
True if clusters have same property values

Syntax
isequal(C1,C2)
isequal(C1,C2,C3,...)

Description
isequal(C1,C2) returns logical 1 (true) if clusters C1 and C2 have the same property values, or logical 0 (false) otherwise.
isequal(C1,C2,C3,...) returns true if all clusters are equal. isequal can operate on arrays of clusters. In this case, the arrays are compared element by element.
When comparing clusters, isequal does not compare the contents of the clusters' Jobs property.

Examples
Compare clusters after some properties are modified.

c1 = parcluster('local');
c1.NumWorkers = 2; % Modify cluster
c1.saveAsProfile('local2') % Create new profile
c2 = parcluster('local2'); % Make cluster from new profile
isequal(c1,c2)
 1

c0 = parcluster('local') % Use original profile
isequal(c0,c1)
 0

See Also
parcluster
Purpose True for replicated array

Syntax tf = isreplicated(X)

Description tf = isreplicated(X) returns true for a replicated array, or false otherwise. For a description of a replicated array, see “Nondistributed Versus Distributed Arrays” on page 5-2. isreplicated also returns true for a Composite X if all its elements are identical.

Tips isreplicated(X) requires checking for equality of the array X across all workers. This might require extensive communication and time. isreplicated is most useful for debugging or error checking small arrays. A codistributed array is not replicated.

Examples With an open parallel pool,

spmd
 A = magic(3);
 t = isreplicated(A) % returns t = true
 B = magic(labindex);
 f = isreplicated(B) % returns f = false
end

See Also iscodistributed |isdistributed
Purpose
File for user-defined options to run when job starts

Syntax
jobStartup(job)

Arguments
job The job for which this startup is being executed.

Description
jobStartup(job) runs automatically on a worker the first time that worker evaluates a task for a particular job. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the jobStartup.m file to define job initialization actions on the worker. The worker looks for jobStartup.m in the following order, executing the one it finds first:

1. Included in the job’s AttachedFiles property.
2. In a folder included in the job’s AdditionalPaths property.
3. In the worker’s MATLAB installation at the location `matlabroot/toolbox/distcomp/user/jobStartup.m`

To create a version of jobStartup.m for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required. For further details on jobStartup and its implementation, see the text in the installed jobStartup.m file.

See Also
poolStartup | taskFinish | taskStartup
labBarrier

Purpose
Block execution until all workers reach this call

Syntax
labBarrier

Description
labBarrier blocks execution of a parallel algorithm until all workers have reached the call to labBarrier. This is useful for coordinating access to shared resources such as file I/O.

Examples

Synchronize Workers for Timing
When timing code execution on the workers, use labBarrier to ensure all workers are synchronized and start their timed work together.

labBarrier;
tic
 A = codistributed.rand(1,1e7);
distTime = toc;

See Also
labBroadcast | labReceive | labSend | labSendReceive
Purpose
Send data to all workers or receive data sent to all workers

Syntax
\[
\begin{align*}
\text{shared_data} &= \text{labBroadcast}(\text{srcWkrIdx}, \text{data}) \\
\text{shared_data} &= \text{labBroadcast}(\text{srcWkrIdx})
\end{align*}
\]

Arguments
- \text{srcWkrIdx}
 The \text{labindex} of the worker sending the broadcast.
- \text{data}
 The data being broadcast. This argument is required only for the worker that is broadcasting. The absence of this argument indicates that a worker is receiving.
- \text{shared_data}
 The broadcast data as it is received on all other workers.

Description
\[
\begin{align*}
\text{shared_data} &= \text{labBroadcast}(\text{srcWkrIdx}, \text{data}) \text{ sends the specified data to all executing workers. The data is broadcast from the worker with } \text{labindex} = \text{srcWkrIdx}, \text{ and is received by all other workers.} \\
\text{shared_data} &= \text{labBroadcast}(\text{srcWkrIdx}) \text{ receives on each executing worker the specified } \text{shared_data} \text{ that was sent from the worker whose } \text{labindex} \text{ is } \text{srcWkrIdx}. \\
\text{If } \text{labindex} \text{ is not } \text{srcWkrIdx}, \text{ then you do not include the } \text{data} \text{ argument. This indicates that the function is to receive data, not broadcast it. The received data, } \text{shared_data}, \text{ is identical on all workers.} \\
\text{This function blocks execution until the worker's involvement in the collective broadcast operation is complete. Because some workers may complete their call to } \text{labBroadcast} \text{ before others have started, use } \text{labBarrier} \text{ if you need to guarantee that all workers are at the same point in a program.}
\end{align*}
\]

Examples
- In this case, the broadcaster is the worker whose \text{labindex} is 1.
 \[
 \text{srcWkrIdx} = 1;
 \]
if labindex == srcWkrIdx
 data = randn(10);
 shared_data = labBroadcast(srcWkrIdx,data);
else
 shared_data = labBroadcast(srcWkrIdx);
end

See Also

labBarrier | labindex | labSendReceive
Purpose Index of this worker

Syntax

id = labindex

Description id = labindex returns the index of the worker currently executing the function. labindex is assigned to each worker when a job begins execution, and applies only for the duration of that job. The value of labindex spans from 1 to n, where n is the number of workers running the current job, defined by numlabs.

Tips In an spmd block, because you have access to all workers individually and control what gets executed on them, each worker has a unique labindex.

However, inside a parfor-loop, labindex always returns a value of 1.

See Also labSendReceive | numlabs
Purpose

Test to see if messages are ready to be received from other worker

Syntax

```matlab
isDataAvail = labProbe
isDataAvail = labProbe(srcWkrIdx)
isDataAvail = labProbe('any',tag)
isDataAvail = labProbe(srcWkrIdx,tag)
[isDataAvail,srcWkrIdx,tag] = labProbe
```

Arguments

- `srcWkrIdx` : `labindex` of a particular worker from which to test for a message.
- `tag` : Tag defined by the sending worker's `labSend` function to identify particular data.
- `'any'` : String to indicate that all workers should be tested for a message.
- `isDataAvail` : Logical indicating if a message is ready to be received.

Description

`isDataAvail = labProbe` returns a logical value indicating whether any data is available for this worker to receive with the `labReceive` function.

`isDataAvail = labProbe(srcWkrIdx)` tests for a message only from the specified worker.

`isDataAvail = labProbe('any',tag)` tests only for a message with the specified tag, from any worker.

`isDataAvail = labProbe(srcWkrIdx,tag)` tests for a message from the specified worker and tag.

`[isDataAvail,srcWkrIdx,tag] = labProbe` returns `labindex` of the workers and tags of ready messages. If no data is available, `srcWkrIdx` and `tag` are returned as `[]`.

See Also

`labindex` | `labReceive` | `labSend` | `labSendReceive`
labReceive

Purpose
Receive data from another worker

Syntax
- `data = labReceive`
- `data = labReceive(srcWkrIdx)`
- `data = labReceive('any',tag)`
- `data = labReceive(srcWkrIdx,tag)`
- `[data,srcWkrIdx,tag] = labReceive`

Arguments
- `srcWkrIdx`
 - `labindex` of a particular worker from which to receive data.
- `tag`
 - Tag defined by the sending worker's `labSend` function to identify particular data.
- `'any'`
 - String to indicate that data can come from any worker.
- `data`
 - Data sent by the sending worker's `labSend` function.

Description
- `data = labReceive` receives data from any worker with any tag.
- `data = labReceive(srcWkrIdx)` receives data from the specified worker with any tag.
- `data = labReceive('any',tag)` receives data from any worker with the specified tag.
- `data = labReceive(srcWkrIdx,tag)` receives data from only the specified worker with the specified tag.
- `[data,srcWkrIdx,tag] = labReceive` returns the source worker `labindex` and tag with the data.

Tips
This function blocks execution in the worker until the corresponding call to `labSend` occurs in the sending worker.

See Also
- `labBarrier`
- `labindex`
- `labProbe`
- `labSend`
- `labSendReceive`
labSend

Purpose
Send data to another worker

Syntax
labSend(data,rcvWkrIdx)
labSend(data,rcvWkrIdx,tag)

Arguments
<table>
<thead>
<tr>
<th>data</th>
<th>Data sent to the other workers; any MATLAB data type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcvWkrIdx</td>
<td>labindex of receiving worker or workers.</td>
</tr>
<tr>
<td>tag</td>
<td>Nonnegative integer to identify data.</td>
</tr>
</tbody>
</table>

Description
labSend(data,rcvWkrIdx) sends the data to the specified destination. data can be any MATLAB data type. rcvWkrIdx identifies the labindex of the receiving worker, and must be either a scalar or a vector of integers between 1 and numlabs; it cannot be labindex of the current (sending) worker.

labSend(data,rcvWkrIdx,tag) sends the data to the specified destination with the specified tag value. tag can be any integer from 0 to 32767, with a default of 0.

Tips
This function might or might not return before the corresponding labReceive completes in the receiving worker.

See Also
labBarrier | labindex | labProbe | labReceive | labSendReceive | numlabs
labSendReceive

Purpose
Simultaneously send data to and receive data from another worker

Syntax
\[
dataReceived = \text{labSendReceive}(\text{rcvWkrIdx}, \text{srcWkrIdx}, \text{dataSent})
\]
\[
dataReceived = \text{labSendReceive}(\text{rcvWkrIdx}, \text{srcWkrIdx}, \text{dataSent}, \text{tag})
\]

Arguments
- **dataSent**: Data on the sending worker that is sent to the receiving worker; any MATLAB data type.
- **dataReceived**: Data accepted on the receiving worker.
- **rcvWkrIdx**: labindex of the receiving worker to which data is sent.
- **srcWkrIdx**: labindex of the source worker from which data is sent.
- **tag**: Nonnegative integer to identify data.

Description
\[
dataReceived = \text{labSendReceive}(\text{rcvWkrIdx}, \text{srcWkrIdx}, \text{dataSent})
\]
sends \text{dataSent} to the worker whose labindex is \text{rcvWkrIdx}, and receives \text{dataReceived} from the worker whose labindex is \text{srcWkrIdx}. The values for arguments \text{rcvWkrIdx} and \text{srcWkrIdx} must be scalars. This function is conceptually equivalent to the following sequence of calls:

\[
\text{labSend(dataSent,rcvWkrIdx)};
\]
\[
\text{dataReceived = labReceive(srcWkrIdx)};
\]

with the important exception that both the sending and receiving of data happens concurrently. This can eliminate deadlocks that might otherwise occur if the equivalent call to \text{labSend} would block.

If \text{rcvWkrIdx} is an empty array, \text{labSendReceive} does not send data, but only receives. If \text{srcWkrIdx} is an empty array, \text{labSendReceive} does not receive data, but only sends.
labSendReceive

dataReceived = labSendReceive(rcvWkrIdx, srcWkrIdx, dataSent, tag) uses the specified tag for the communication. tag can be any integer from 0 to 32767.

Examples

Create a unique set of data on each worker, and transfer each worker’s data one worker to the right (to the next higher labindex).

First use the magic function to create a unique value for the variant array mydata on each worker.

mydata = magic(labindex)

Lab 1:
 mydata =
 1
Lab 2:
 mydata =
 1 3
 4 2
Lab 3:
 mydata =
 8 1 6
 3 5 7
 4 9 2

Define the worker on either side, so that each worker will receive data from the worker on its “left,” while sending data to the worker on its “right,” cycling data from the end worker back to the beginning worker.

rcvWkrIdx = mod(labindex, numlabs) + 1; % one worker to the right
srcWkrIdx = mod(labindex - 2, numlabs) + 1; % one worker to the left

Transfer the data, sending each worker’s mydata into the next worker’s otherdata variable, wrapping the third worker’s data back to the first worker.

otherdata = labSendReceive(rcvWkrIdx, srcWkrIdx, mydata)
Lab 1:
otherdata =
 8 1 6
 3 5 7
 4 9 2
Lab 2:
otherdata =
 1
Lab 3:
otherdata =
 1 3
 4 2

Transfer data to the next worker without wrapping data from the last worker to the first worker.

if labindex < numlabs; rcvWkrIdx = labindex + 1; else rcvWkrIdx = []; end;
if labindex > 1; srcWkrIdx = labindex - 1; else srcWkrIdx = []; end;
otherdata = labSendReceive(rcvWkrIdx,srcWkrIdx,mydata)

Lab 1:
otherdata =
 []
Lab 2:
otherdata =
 1
Lab 3:
otherdata =
 1 3
 4 2

See Also
labBarrier | labindex | labProbe | labReceive | labSend | numlabs
Purpose
Length of object array

Syntax
length(obj)

Arguments
obj An object or an array of objects.

Description
length(obj) returns the length of obj. It is equivalent to the command max(size(obj)).

Examples
Examine how many tasks are in the job j1.

```plaintext
length(j1.Tasks)
ans =
    9
```

See Also
size
<table>
<thead>
<tr>
<th>Purpose</th>
<th>List of files automatically attached to job, task, or parallel pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>listAutoAttachedFiles(obj)</code></td>
</tr>
<tr>
<td>Description</td>
<td><code>listAutoAttachedFiles(obj)</code> performs a dependency analysis on all the task functions, or on the batch job script or function. Then it displays a list of the code files that are already or going to be automatically attached to the job or task object <code>obj</code>. If <code>obj</code> is a parallel pool, the output lists the files that have already been attached to the parallel pool following an earlier dependency analysis. The dependency analysis runs if a <code>parfor</code> or <code>spmd</code> block errors due to an undefined function. At that point any files, functions, or scripts needed by the <code>parfor</code> or <code>spmd</code> block are attached if possible.</td>
</tr>
<tr>
<td>Input Arguments</td>
<td><code>obj - Job, task, or pool to which files automatically attach</code></td>
</tr>
<tr>
<td></td>
<td>`job object</td>
</tr>
<tr>
<td></td>
<td>Job, task, or pool to which code files are automatically attached, specified as a <code>parallel.Job</code>, <code>parallel.Task</code>, or <code>parallel.Pool</code> object. The <code>AutoAttachFiles</code> property of the job object must be <code>true</code>; if the input is a task object, then this applies to its parent job object.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>obj = createJob(cluster);</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>obj = gcp</code></td>
</tr>
<tr>
<td>Examples</td>
<td>Automatically Attach Files via Cluster Profile</td>
</tr>
<tr>
<td></td>
<td>Employ a cluster profile to automatically attach code files to a job. Set the <code>AutoAttachFiles</code> property for a job in the cluster’s profile. If this property value is true, then all jobs you create on that cluster with this profile will have the necessary code files automatically attached. This example assumes that the cluster profile <code>myAutoCluster</code> has that setting.</td>
</tr>
<tr>
<td></td>
<td>Create batch job, applying your cluster.</td>
</tr>
<tr>
<td></td>
<td><code>obj = batch(myScript,'profile','myAutoCluster');</code></td>
</tr>
</tbody>
</table>
listAutoAttachedFiles

Verify attached files by viewing list.

`listAutoAttachedFiles(obj)`

Automatically Attach Files Programmatically

Programmatically set a job to automatically attach code files, and then view a list of those files for one of the tasks in the job.

```matlab
c = parcluster(); % Use default profile
j = createJob(c);
j.AutoAttachFiles = true;
obj = createTask(j,myFun,OutNum,ArgCell);
listAutoAttachedFiles(obj) % View attached list
```

The files returned in the output listing are those that analysis has determined to be required for the workers to evaluate the function `myFun`, and which automatically attach to the job.

See Also

`batch` | `createCommunicatingJob` | `createJob` | `createTask` | `parpool` | `parcluster`

Concepts

- “Create and Modify Cluster Profiles” on page 6-18
Purpose
Load workspace variables from batch job

Syntax
load(job)
load(job, 'X')
load(job, 'X', 'Y', 'Z*')
load(job, '-regexp', 'PAT1', 'PAT2')
S = load(job ...)

Arguments
job Job from which to load workspace variables.
'X', 'Y', 'Z*' Variables to load from the job. Wildcards allow pattern matching in MAT-file style.
'-regexp' Indication to use regular expression pattern matching.
S Struct containing the variables after loading.

Description
load(job) retrieves all variables from a batch job and assigns them into the current workspace. load throws an error if the batch runs a function (instead of a script), the job is not finished, or the job encountered an error while running.

load(job, 'X') loads only the variable named X from the job.

load(job, 'X', 'Y', 'Z*') loads only the specified variables. The wildcard '*' loads variables that match a pattern (MAT-file only).

load(job, '-regexp', 'PAT1', 'PAT2') can be used to load all variables matching the specified patterns using regular expressions. For more information on using regular expressions, type doc regexp at the command prompt.

S = load(job ...) returns the contents of job into variable S, which is a struct containing fields matching the variables retrieved.
Examples

Run a batch job and load its results into your client workspace.

```matlab
j = batch('myScript');
wait(j)
load(j)
```

Load only variables whose names start with 'a'.

```matlab
load(job, 'a*')
```

Load only variables whose names contain any digits.

```matlab
load(job, '-regexp', '\d')
```

See Also

batch | fetchOutputs
Purpose
Log out of MJS cluster

Syntax
`logout(c)`

Description
`logout(c)` logs you out of the MJS cluster specified by cluster object `c`. Any subsequent call to a privileged action requires you to re-authenticate with a valid password. Logging out might be useful when you are finished working on a shared machine.

Examples

See Also
changePassword
methods

Purpose
List functions of object class

Syntax

```
methods(obj)
out = methods(obj)
```

Arguments

- **obj** An object or an array of objects.
- **out** Cell array of strings.

Description

`methods(obj)` returns the names of all methods for the class of which `obj` is an instance.

`out = methods(obj)` returns the names of the methods as a cell array of strings.

Examples
Create cluster, job, and task objects, and examine what methods are available for each.

```
c = parcluster();
methods(c)

j1 = createJob(c);
methods(j1)

t1 = createTask(j1, @rand, 1, {3});
methods(t1)
```

See Also

help
Purpose

Location of MPI implementation

Syntax

\[\text{primaryLib, extras} = \text{mpiLibConf} \]

Arguments

- **primaryLib**: MPI implementation library used by a parallel job.
- **extras**: Cell array of other required library names.

Description

\[\text{primaryLib, extras} = \text{mpiLibConf} \]

returns the MPI implementation library to be used by a parallel job. **primaryLib** is the name of the shared library file containing the MPI entry points. **extras** is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create a file named `mpiLibConf.m`, and place it on the MATLAB path. The recommended location is `matlabroot/toolbox/distcomp/user`. Your `mpiLibConf.m` file must be higher on the cluster workers’ path than `matlabroot/toolbox/distcomp/mpi`. (Sending `mpiLibConf.m` as a file dependency for this purpose does not work.)

Tips

Under all circumstances, the MPI library must support all MPI-1 functions. Additionally, the MPI library must support null arguments to `MPI_Init` as defined in section 4.2 of the MPI-2 standard. The library must also use an `mpi.h` header file that is fully compatible with MPICH2.

When used with the MATLAB job scheduler or the local cluster, the MPI library must support the following additional MPI-2 functions:

- `MPI_Open_port`
- `MPI_Comm_accept`
- `MPI_Comm_connect`

When used with any third-party scheduler, it is important to launch the workers using the version of `mpiexec` corresponding to the MPI library.
being used. Also, you might need to launch the corresponding process management daemons on the cluster before invoking mpiexec.

Examples

Use the `mpiLibConf` function to view the current MPI implementation library:

```
mpiLibConf
   mpich2.dll
```
Purpose

Profile parallel communication and execution times

Syntax

mpiprofile
mpiprofile on <options>
mpiprofile off
mpiprofile resume
mpiprofile clear
mpiprofile status
mpiprofile reset
mpiprofile info
mpiprofile viewer
mpiprofile('viewer', <profinfoarray>)

Description

mpiprofile enables or disables the parallel profiler data collection on a MATLAB worker running a parallel job. mpiprofile aggregates statistics on execution time and communication times. The statistics are collected in a manner similar to running the profile command on each MATLAB worker. By default, the parallel profiling extensions include array fields that collect information on communication with each of the other workers. This command in general should be executed in pmode or as part of a task in a parallel job.

mpiprofile on <options> starts the parallel profiler and clears previously recorded profile statistics.

mpiprofile takes the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-detail mmex</td>
<td>This option specifies the set of functions for which profiling statistics are gathered. -detail mmex (the default) records information about functions, local functions, and MEX-functions.</td>
</tr>
<tr>
<td>-detail builtin</td>
<td>-detail builtin additionally</td>
</tr>
</tbody>
</table>
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>records information about built-in functions such as <code>eig</code> or <code>labReceive</code>.</td>
</tr>
<tr>
<td>-messagedetail default</td>
<td>This option specifies the detail at which communication information is stored.</td>
</tr>
<tr>
<td>-messagedetail simplified</td>
<td>-messagedetail default collects information on a per-lab instance.</td>
</tr>
<tr>
<td></td>
<td>-messagedetail simplified turns off collection for PerLab data fields, which reduces the profiling overhead. If you have a very large cluster, you might want to use this option; however, you will not get all the detailed inter-lab communication plots in the viewer.</td>
</tr>
<tr>
<td></td>
<td>For information about the structure of returned data, see <code>mpiprofile info</code> below.</td>
</tr>
<tr>
<td>-history</td>
<td><code>mpiprofile</code> supports these options in the same way as the standard profile.</td>
</tr>
<tr>
<td>-nohistory</td>
<td>No other profile options are supported by <code>mpiprofile</code>. These three options have no effect on the data displayed by <code>mpiprofile viewer</code>.</td>
</tr>
<tr>
<td>-historysize <code><size></code></td>
<td><code>mpiprofile off</code> stops the parallel profiler. To reset the state of the profiler and disable collecting communication information, you should also call <code>mpiprofile reset</code>.</td>
</tr>
</tbody>
</table>
mpiprofile resume restarts the profiler without clearing previously recorded function statistics. This works only in pmode or in the same MATLAB worker session.

mpiprofile clear clears the profile information.

mpiprofile status returns a valid status when it runs on the worker.

mpiprofile reset turns off the parallel profiler and resets the data collection back to the standard profiler. If you do not call reset, subsequent profile commands will collect MPI information.

mpiprofile info returns a profiling data structure with additional fields to the one provided by the standard profile info in the FunctionTable entry. All these fields are recorded on a per-function and per-line basis, except for the *PerLab fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BytesSent</td>
<td>Records the quantity of data sent</td>
</tr>
<tr>
<td>BytesReceived</td>
<td>Records the quantity of data received</td>
</tr>
<tr>
<td>TimeWasted</td>
<td>Records communication waiting time</td>
</tr>
<tr>
<td>CommTime</td>
<td>Records the communication time</td>
</tr>
<tr>
<td>CommTimePerLab</td>
<td>Vector of communication receive time for each lab</td>
</tr>
<tr>
<td>TimeWastedPerLab</td>
<td>Vector of communication waiting time for each lab</td>
</tr>
<tr>
<td>BytesReceivedPerLab</td>
<td>Vector of data received from each lab</td>
</tr>
</tbody>
</table>

The three *PerLab fields are collected only on a per-function basis, and can be turned off by typing the following command in pmode:

mpiprofile on -messagedetail simplified

mpiprofile viewer is used in pmode after running user code with mpiprofile on. Calling the viewer stops the profiler and opens the graphical profile browser with parallel options. The output is an HTML
mpiprofile

report displayed in the profiler window. The file listing at the bottom of the function profile page shows several columns to the left of each line of code. In the summary page:

- Column 1 indicates the number of calls to that line.
- Column 2 indicates total time spent on the line in seconds.
- Columns 3–6 contain the communication information specific to the parallel profiler

`mpiprofile('viewer', <profinfoarray>)` in function form can be used from the client. A structure `<profinfoarray>` needs be passed in as the second argument, which is an array of `mpiprofile` info structures. See `pInfoVector` in the Examples section below.

`mpiprofile` does not accept `-timer clock` options, because the communication timer clock must be real.

For more information and examples on using the parallel profiler, see “Profiling Parallel Code” on page 6-40.

Examples

In pmode, turn on the parallel profiler, run your function in parallel, and call the viewer:

```matlab
mpiprofile on;
% call your function;
mpiprofile viewer;
```

If you want to obtain the profiler information from a parallel job outside of pmode (i.e., in the MATLAB client), you need to return output arguments of `mpiprofile` info by using the functional form of the command. Define your function `foo()`, and make it the task function in a parallel job:

```matlab
function [pInfo, yourResults] = foo
mpiprofile on
initData = (rand(100, codistributor()) ...  
          * rand(100, codistributor()));
pInfo = mpiprofile('info');
```
yourResults = gather(initData,1)

After the job runs and foo() is evaluated on your cluster, get the data on the client:

A = fetchOutputs(yourJob);

Then view parallel profile information:

pInfoVector = [A{: , 1}];
mpiprofile('viewer', pInfoVector);

See Also

profile | mpiSettings | pmode
mpiSettings

Purpose
Configure options for MPI communication

Syntax

```matlab
mpiSettings('DeadlockDetection','on')
mpiSettings('MessageLogging','on')
mpiSettings('MessageLoggingDestination','CommandWindow')
mpiSettings('MessageLoggingDestination','stdout')
mpiSettings('MessageLoggingDestination','File','filename')
```

Description

- `mpiSettings('DeadlockDetection','on')` turns on deadlock detection during calls to `labSend` and `labReceive`. If deadlock is detected, a call to `labReceive` might cause an error. Although it is not necessary to enable deadlock detection on all workers, this is the most useful option. The default value is 'off' for parallel jobs, and 'on' inside `pmode` sessions or `spmd` statements. Once the setting has been changed within a `pmode` session or an `spmd` statement, the setting stays in effect until either the `pmode` session ends or the parallel pool is closed.

- `mpiSettings('MessageLogging','on')` turns on MPI message logging. The default is 'off'. The default destination is the MATLAB Command Window.

- `mpiSettings('MessageLoggingDestination','CommandWindow')` sends MPI logging information to the MATLAB Command Window. If the task within a parallel job is set to capture Command Window output, the MPI logging information will be present in the task's `CommandWindowOutput` property.

- `mpiSettings('MessageLoggingDestination','stdout')` sends MPI logging information to the standard output for the MATLAB process. If you are using a job manager, this is the mdce service log file; if you are using an mpiexec cluster, this is the mpiexec debug log, which you can read with `getDebugLog`.

- `mpiSettings('MessageLoggingDestination','File','filename')` sends MPI logging information to the specified file.

Tips
Setting the `MessageLoggingDestination` does not automatically enable message logging. A separate call is required to enable message logging.
mpiSettings has to be called on the worker, not the client. That is, it should be called within the task function, within jobStartup.m, or within taskStartup.m.

Examples

Set deadlock detection for a parallel job inside the jobStartup.m file for that job:

```
% Inside jobStartup.m for the parallel job
mpiSettings('DeadlockDetection', 'on');
myLogFname = sprintf('%s_%d.log', tempname, labindex);
mpiSettings('MessageLoggingDestination', 'File', myLogFname);
mpiSettings('MessageLogging', 'on');
```

Turn off deadlock detection for all subsequent spmd statements that use the same parallel pool:

```
spmd; mpiSettings('DeadlockDetection', 'off'); end
```
Purpose
Total number of workers operating in parallel on current job

Syntax
\[n = \text{numlabs} \]

Description
\(n = \text{numlabs} \) returns the total number of workers currently operating on the current job. This value is the maximum value that can be used with \text{labSend} and \text{labReceive}.

Tips
In an \text{spmd} block, \text{numlabs} on each worker returns the parallel pool size. However, inside a \text{parfor}-loop, \text{numlabs} always returns a value of 1.

See Also
\text{labindex} | \text{labSendReceive}
Purpose
Apply function to each page of array on GPU

Syntax

- \(A = \text{pagefun}(\text{FUN}, B) \)
- \(A = \text{pagefun}(\text{FUN}, B, C, ___) \)
- \([A, B, ___] = \text{pagefun}(\text{FUN}, C, ___)\)

Description

`pagefun` iterates over the pages of a `gpuArray`, applying the same function to each page.

- `A = \text{pagefun}(\text{FUN}, B)` applies the function specified by `FUN` to each page of the `gpuArray` `B`, and returns the results in `gpuArray` `A`, such that \(A(:,:,I,J,\ldots) = \text{FUN}(B(:,:,I,J,\ldots)) \). `FUN` is a handle to a function that takes a two-dimensional input argument.

- `A = \text{pagefun}(\text{FUN}, B, C, ___)` evaluates `FUN` using pages of the arrays `B`, `C`, etc., as input arguments with scalar expansion enabled. Any of the input page dimensions that are scalar are virtually replicated to match the size of the other arrays in that dimension so that \(A(:,:,I,J,\ldots) = \text{FUN}(B(:,:,I,J,\ldots), C(:,:,I,J,\ldots),\ldots) \). At least one of the inputs `B`, `C`, etc. must be a `gpuArray`. Any other inputs held in CPU memory are converted to a `gpuArray` before calling the function on the GPU. If an array is to be used in several different `pagefun` calls, it is more efficient to convert that array to a `gpuArray` before your series of `pagefun` calls. The input pages `B(:,:,I,J,\ldots), C(:,:,I,J,\ldots),\ldots` etc., must satisfy all of the input and output requirements of `FUN`.

- \([A, B, ___] = \text{pagefun}(\text{FUN}, C, ___)\), where `FUN` is a handle to a function that returns multiple outputs, returns `gpuArrays` `A`, `B`, etc., each corresponding to one of the output arguments of `FUN`. `pagefun` invokes `FUN` with as many outputs as there are in the call to `pagefun`. All elements of `A` must be the same class; `B` can be a different class from `A`, but all elements of `B` must be of the same class; etc.

`FUN` must return values of the same class each time it is called. The order in which `pagefun` computes pages is not specified and should not be relied on.

`FUN` must be a handle to a function that is written in the MATLAB language (i.e., not a built-in function or a MEX-function).
Currently the only valid value of `FUN` is `@mtimes`.

Examples

```matlab
M = 3; % output number of rows
K = 6; % matrix multiply inner dimension
N = 2; % output number of columns
P1 = 10; % size of first page dimension
P2 = 17; % size of second page dimension
P3 = 4; % size of third page dimension
P4 = 12; % size of fourth page dimension
A = gpuArray.rand(M,K,P1,1,P3);
B = gpuArray.rand(K,N,1,P2,P3,P4);
C = pagefun(@mtimes, A, B);
s = size(C) % M x N x P1 x P2 x P3 x P4
```

```matlab
s =
  3  2  10  17  4  12
```

```matlab
M = 300; % output number of rows
K = 500; % matrix multiply inner dimension
N = 1000; % output number of columns
P = 200; % number of pages
A = gpuArray.rand(M,K);
B = gpuArray.rand(K,N,P);
C = pagefun(@mtimes, A, B);
s = size(C) % returns M x N x P
```

```matlab
s =
   300 1000  200
```

See Also

`arrayfun` | `bsxfun` | `gather` | `gpuArray`
Purpose

Names of all available cluster profiles

Syntax

\[
\text{ALLPROFILES} = \text{parallel.clusterProfiles}
\]

\[
[\text{ALLPROFILES}, \text{DEFAULTPROFILE}] = \text{parallel.clusterProfiles}
\]

Description

\text{ALLPROFILES} = \text{parallel.clusterProfiles} \text{ returns a cell array containing the names of all available profiles.}

\[\text{[ALLPROFILES, DEFAULTPROFILE]} = \text{parallel.clusterProfiles} \text{ returns a cell array containing the names of all available profiles, and separately the name of the default profile.}\]

The cell array \text{ALLPROFILES} always contains a profile called \text{local} for the local cluster, and always contains the default profile. If the default profile has been deleted, or if it has never been set, \text{parallel.clusterProfiles} returns \text{local} as the default profile.

You can create and change profiles using the \text{saveProfile} or \text{saveAsProfile} methods on a cluster object. Also, you can create, delete, and change profiles through the Cluster Profile Manager.

Examples

Display the names of all the available profiles and set the first in the list to be the default profile.

\[
\text{allNames} = \text{parallel.clusterProfiles}()
\text{parallel.defaultClusterProfile(allNames{1});}
\]

Display the names of all the available profiles and get the cluster identified by the last profile name in the list.

\[
\text{allNames} = \text{parallel.clusterProfiles}()
\text{myCluster = parcluster(allNames{end});}
\]

See Also

\text{parallel.defaultClusterProfile} | \text{parallel.exportProfile} | \text{parallel.importProfile}
parallel.defaultClusterProfile

Purpose
Examine or set default cluster profile

Syntax

- \(p = \text{parallel.defaultClusterProfile} \)
- \(\text{oldprofile} = \text{parallel.defaultClusterProfile(newprofile)} \)

Description

- \(p = \text{parallel.defaultClusterProfile} \) returns the name of the current default cluster profile.

- \(\text{oldprofile} = \text{parallel.defaultClusterProfile(newprofile)} \) sets the default profile to be `newprofile` and returns the previous default profile. It might be useful to keep the old profile so that you can reset the default later.

If the default profile has been deleted, or if it has never been set, `parallel.defaultClusterProfile` returns 'local' as the default profile.

You can save modified profiles with the `saveProfile` or `saveAsProfile` method on a cluster object. You can create, delete, import, and modify profiles with the Cluster Profile Manager, accessible from the MATLAB desktop Home tab Environment area by selecting Parallel > Manage Cluster Profiles.

Examples

Display the names of all available profiles and set the first in the list to be the default.

- \(\text{allProfiles} = \text{parallel.clusterProfiles} \)
- \(\text{parallel.defaultClusterProfile(allProfiles{1})} \)

First set the profile named 'MyProfile' to be the default, and then set the profile named 'Profile2' to be the default.

- \(\text{parallel.defaultClusterProfile('MyProfile')} \)
- \(\text{oldDefault} = \text{parallel.defaultClusterProfile('Profile2')} \)
- \(\text{strcmp(oldDefault,'MyProfile')} \) % returns true

See Also

- `parallel.clusterProfiles` | `parallel.importProfile`
Purpose
Export one or more profiles to file

Syntax
parallel.exportProfile(profileName, filename)
parallel.exportProfile({profileName1, profileName2,..., profileNameN}, filename)

Description
parallel.exportProfile(profileName, filename) exports the profile with the name profileName to specified filename. The extension .settings is appended to the filename, unless already there.

parallel.exportProfile({profileName1, profileName2,..., profileNameN}, filename) exports the profiles with the specified names to filename.

To import a profile, use parallel.importProfile or the Cluster Profile Manager.

Examples
Export the profile named MyProfile to the file MyExportedProfile.settings.

parallel.exportProfile('MyProfile','MyExportedProfile.settings')

Export the default profile to the file MyDefaultProfile.settings.

def_profile = parallel.defaultClusterProfile();
parallel.exportProfile(def_profile,'MyDefaultProfile.settings')

Export all profiles except for local to the file AllProfiles.settings.

allProfiles = parallel.clusterProfiles();
% Remove 'local' from allProfiles
notLocal = ~strcmp(allProfiles,'local');
profilesToExport = allProfiles(notLocal);
if ~isempty(profilesToExport)
 parallel.exportProfile(profilesToExport,'AllProfiles.settings');
end

See Also
parallel.clusterProfiles | parallel.importProfile
Purpose
Create GPU CUDA kernel object from PTX and CU code

Syntax

```
KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO, FUNC)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE, FUNC)
```

Description

`KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO)` and `KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO, FUNC)` create a CUDAKernel object that you can use to call a CUDA kernel on the GPU. PTXFILE is the name of the file that contains the PTX code, or the contents of a PTX file as a string; and CPROTO is the C prototype for the kernel call that `KERN` represents. If specified, FUNC must be a string that unambiguously defines the appropriate kernel entry name in the PTX file. If `FUNC` is omitted, the PTX file must contain only a single entry point.

`KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE)` and `KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE, FUNC)` create a kernel object that you can use to call a CUDA kernel on the GPU. In addition, they read the CUDA source file CUFILE, and look for a kernel definition starting with '__global__' to find the function prototype for the CUDA kernel that is defined in PTXFILE.

For information on executing your kernel object, see “Run a CUDAKernel” on page 9-28.

Examples

If `simpleEx.cu` contains the following:

```c
/*
 * Add a constant to a vector.
 */
__global__ void addToVector(float * pi, float c, int vecLen) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < vecLen) {
        pi[idx] += c;
    }
}
```
and `simpleEx.ptx` contains the PTX resulting from compiling `simpleEx.cu` into PTX, both of the following statements return a kernel object that you can use to call the `addToVector` CUDA kernel.

```matlab
kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
    'simpleEx.cu');
```

```matlab
kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
    'float *, float, int');
```

See Also

`arrayfun` | `existsonGPU` | `feval` | `gpuArray` | `reset`
parallel.importProfile

Purpose
Import cluster profiles from file

Syntax
prof = parallel.importProfile(filename)

Description
prof = parallel.importProfile(filename) imports the profiles stored in the specified file and returns the names of the imported profiles. If filename has no extension, .settings is assumed; configuration files must be specified with the .mat extension. Configuration .mat files contain only one profile, but profile .settings files can contain one or more profiles. If only one profile is defined in the file, then prof is a string reflecting the name of the profile; if multiple profiles are defined in the file, then prof is a cell array of strings. If a profile with the same name as an imported profile already exists, an extension is added to the name of the imported profile.

You can use the imported profile with any functions that support profiles. parallel.importProfile does not set any of the imported profiles as the default; you can set the default profile by using the parallel.defaultClusterProfile function.

Profiles that were exported in a previous release are upgraded during import. Configurations are automatically converted to cluster profiles. Imported profiles are saved as a part of your MATLAB settings, so these profiles are available in subsequent MATLAB sessions without importing again.

Examples
Import a profile from file ProfileMaster.settings and set it as the default cluster profile.

```matlab
profile_master = parallel.importProfile('ProfileMaster');
parallel.defaultClusterProfile(profile_master)
```

Import all the profiles from the file ManyProfiles.settings, and use the first one to open a parallel pool.

```matlab
profs = parallel.importProfile('ManyProfiles');
parpool(profs{1})
```
parallel.importProfile

Import a configuration from the file OldConfiguration.mat, and set it as the default parallel profile.

old_conf = parallel.importProfile('OldConfiguration.mat')
parallel.defaultClusterProfile(old_conf)

See Also
parallel.clusterProfiles | parallel.defaultClusterProfile | parallel.exportProfile
Purpose
Create cluster object

Syntax
c = parcluster
c = parcluster(profile)

Description
c = parcluster returns a cluster object representing the cluster identified by the default cluster profile, with the cluster object properties set to the values defined in that profile.

c = parcluster(profile) returns a cluster object representing the cluster identified by the specified cluster profile, with the cluster object properties set to the values defined in that profile.

You can save modified profiles with the saveProfile or saveAsProfile method on a cluster object. You can create, delete, import, and modify profiles with the Cluster Profile Manager, accessible from the MATLAB desktop Home tab Environment area by selecting Parallel > Manage Cluster Profiles.

Examples
Find the cluster identified by the default parallel computing cluster profile, with the cluster object properties set to the values defined in that profile.

myCluster = parcluster;

View the name of the default profile and find the cluster identified by it. Open a parallel pool on the cluster.

defaultProfile = parallel.defaultClusterProfile
myCluster = parcluster(defaultProfile);
parpool(myCluster);

Find a particular cluster using the profile named 'MyProfile', and create an independent job on the cluster.

myCluster = parcluster('MyProfile');
j = createJob(myCluster);
Purpose
Execute function asynchronously on parallel pool worker

Syntax

\[
F = \text{parfeval}(p,\text{fcn},\text{numout},\text{in1},\text{in2},\ldots)
\]

\[
F = \text{parfeval}(\text{fcn},\text{numout},\text{in1},\text{in2},\ldots)
\]

Description

\(F = \text{parfeval}(p,\text{fcn},\text{numout},\text{in1},\text{in2},\ldots)\) requests asynchronous execution of the function \(\text{fcn}\) on a worker contained in the parallel pool \(p\), expecting \(\text{numout}\) output arguments and supplying as input arguments \(\text{in1},\text{in2},\ldots\). The asynchronous evaluation of \(\text{fcn}\) does not block MATLAB. \(F\) is a parallel.FevalFuture object, from which the results can be obtained when the worker has completed evaluating \(\text{fcn}\). The evaluation of \(\text{fcn}\) always proceeds unless you explicitly cancel execution by calling \(\text{cancel}(F)\). To request multiple function evaluations, you must call \(\text{parfeval}\) multiple times. (However, \(\text{parfevalOnAll}\) can run the same function on all workers.)

\(F = \text{parfeval}(\text{fcn},\text{numout},\text{in1},\text{in2},\ldots)\) requests asynchronous execution on the current parallel pool. If no pool exists, it starts a new parallel pool, unless your parallel preferences disable automatic creation of pools.

Examples

Submit a single request to the parallel pool and retrieve the outputs.

\[
p = \text{gcp}(); \quad \% \text{get the current parallel pool}
\]

\[
f = \text{parfeval}(p,\text{magic},1,10);
\]

\[
\text{value} = \text{fetchOutputs}(f); \quad \% \text{Blocks until complete}
\]

Submit a vector of multiple future requests in a for-loop and retrieve the individual future outputs as they become available.

\[
p = \text{gcp}();
\]

\[
\% \text{To request multiple evaluations, use a loop.}
\]

\[
\text{for idx} = 1:10
\]

\[
\quad f(idx) = \text{parfeval}(p,\text{magic},1,idx); \quad \% \text{Square size determined by idx}
\]

\[
\text{end}
\]

\[
\% \text{Collect the results as they become available.}
\]

\[
\text{magicResults} = \text{cell}(1,10);
\]

\[
\text{for idx} = 1:10
\]

\[
\% \text{End of example}
\]
```matlab
% fetchNext blocks until next results are available.
[completedIdx,value] = fetchNext(f);
magicResults{completedIdx} = value;
fprintf('Got result with index: %d.\n', completedIdx);
end
```

See Also
cancel | fetchNext | fetchOutputs | parfevalOnAll | parpool | wait
Purpose

Execute function asynchronously on all workers in parallel pool

Syntax

\[F = \text{parfevalOnAll}(p, fcn, \text{numout}, in1, in2, \ldots) \]
\[F = \text{parfevalOnAll}(fcn, \text{numout}, in1, in2, \ldots) \]

Description

\(F = \text{parfevalOnAll}(p, fcn, \text{numout}, \text{in1}, \text{in2}, \ldots) \) requests the asynchronous execution of the function \(fcn \) on all workers in the parallel pool \(p \), expecting \(\text{numout} \) output arguments from each worker and supplying input arguments \(\text{in1}, \text{in2}, \ldots \) to each worker. \(F \) is a parallel.FevalOnAllFuture object, from which you can obtain the results when all workers have completed executing \(fcn \).

\(F = \text{parfevalOnAll}(fcn, \text{numout}, \text{in1}, \text{in2}, \ldots) \) requests asynchronous execution on all workers in the current parallel pool. If no pool exists, it starts a new parallel pool, unless your parallel preferences disable automatic creation of pools.

Examples

Close all Simulink models on all workers.

\[
\begin{align*}
p &= \text{gcp}(); & \% \text{Get the current parallel pool} \\
f &= \text{parfevalOnAll}(p, \text{@bdclose}, 0, \text{'all'}); & \% \text{No output arguments, but you might want to wait for completion} \\
\text{wait}(f); & \% \text{wait(f)};
\end{align*}
\]

See Also

cancel | fetchNext | fetchOutputs | parfeval | parpool | wait
Purpose
Execute loop iterations in parallel

Syntax
parfor loopvar = initval:endval, statements, end
parfor (loopvar = initval:endval, M), statements, end

Description
parfor loopvar = initval:endval, statements, end allows you to write a loop for a statement or block of code that executes in parallel on a cluster of workers, which are identified and reserved with the parpool command. initval and endval must evaluate to finite integer values, or the range must evaluate to a value that can be obtained by such an expression, that is, an ascending row vector of consecutive integers.

The following table lists some ranges that are not valid.

<table>
<thead>
<tr>
<th>Invalid parfor Range</th>
<th>Reason Range Not Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>parfor i = 1:2:25</td>
<td>1, 3, 5,... are not consecutive.</td>
</tr>
<tr>
<td>parfor i = -7.5:7.5</td>
<td>-7.5, -6.5,... are not integers.</td>
</tr>
<tr>
<td>A = [3 7 -2 6 4 -4 9 3 7]; parfor i = find(A>0)</td>
<td>The resulting range, 1, 2, 4,..., has nonconsecutive integers.</td>
</tr>
<tr>
<td>parfor i = [5;6;7;8]</td>
<td>[5;6;7;8] is a column vector, not a row vector.</td>
</tr>
</tbody>
</table>

You can enter a parfor-loop on multiple lines, but if you put more than one segment of the loop statement on the same line, separate the segments with commas or semicolons:

parfor i = range; <loop body>; end

parfor (loopvar = initval:endval, M), statements, end uses M to specify the maximum number of MATLAB workers that will evaluate statements in the body of the parfor-loop. M must be a nonnegative integer. By default, MATLAB uses as many workers as it finds available. If you specify an upper limit, MATLAB employs no more than that number, even if additional workers are available. If
you request more resources than are available, MATLAB uses the maximum number available at the time of the call.

If the `parfor`-loop cannot run on workers in a parallel pool (for example, if no workers are available or \(M \) is 0), MATLAB executes the loop on the client in a serial manner. In this situation, the `parfor` semantics are preserved in that the loop iterations can execute in any order.

Note Because of independence of iteration order, execution of `parfor` does not guarantee deterministic results.

The maximum amount of data that can be transferred in a single chunk between client and workers in the execution of a `parfor`-loop is determined by the JVM memory allocation limit. For details, see “Object Data Size Limitations” on page 6-52.

For a detailed description of `parfor`-loops, see “Parallel for-Loops (parfor)”.

Tips

- A `parfor`-loop runs on the existing parallel pool. If no pool exists, `parfor` will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and `parfor` cannot start one, the loop runs serially in the client session.

- Inside a `parfor`-loop, the functions `labindex` and `numlabs` both always return a value of 1.

- If the `AutoAttachFiles` property in the cluster profile for the parallel pool is set to `true`, MATLAB performs an analysis on a `parfor`-loop to determine what code files are necessary for its execution, then automatically attaches those files to the parallel pool so that the code is available to the workers.

Examples

Suppose that \(f \) is a time-consuming function to compute, and that you want to compute its value on each element of array \(A \) and place the corresponding results in array \(B \):
parfor i = 1:length(A)
 B(i) = f(A(i));
end

Because the loop iteration occurs in parallel, this evaluation can complete much faster than it would in an analogous \texttt{for}-loop.

Next assume that A, B, and C are variables and that f, g, and h are functions:

\begin{verbatim}
parfor i = 1:n
 t = f(A(i));
 u = g(B(i));
 C(i) = h(t, u);
end
\end{verbatim}

If the time to compute f, g, and h is large, \texttt{parfor} will be significantly faster than the corresponding \texttt{for} statement, even if n is relatively small. Although the form of this statement is similar to a \texttt{for} statement, the behavior can be significantly different. Notably, the assignments to the variables i, t, and u do \textit{not} affect variables with the same name in the context of the \texttt{parfor} statement. The rationale is that the body of the \texttt{parfor} is executed in parallel for all values of i, and there is no deterministic way to say what the “final” values of these variables are. Thus, \texttt{parfor} is defined to leave these variables unaffected in the context of the \texttt{parfor} statement. By contrast, the variable C has a different element set for each value of i, and these assignments \textit{do} affect the variable C in the context of the \texttt{parfor} statement.

Another important use of \texttt{parfor} has the following form:

\begin{verbatim}
s = 0;
parfor i = 1:n
 if p(i) \% assume p is a function
 s = s + 1;
 end
end
\end{verbatim}
The key point of this example is that the conditional adding of 1 to \(s \) can be done in any order. After the `parfor` statement has finished executing, the value of \(s \) depends only on the number of iterations for which \(p(i) \) is `true`. As long as \(p(i) \) depends only upon \(i \), the value of \(s \) is deterministic. This technique generalizes to functions other than `plus (+)`.

Note that the variable \(s \) refers to the variable in the context of the `parfor` statement. The general rule is that the only variables in the context of a `parfor` statement that can be affected by it are those like \(s \) (combined by a suitable function like `+`) or those like \(C \) in the previous example (set by indexed assignment).

See Also

`for` | `parpool` | `pmode` | `numlabs`
parpool

Purpose
Create parallel pool on cluster

Syntax

```matlab
parpool
parpool(poolsize)
parpool(profilename)
parpool(profilename,poolsize)
parpool(cluster)
parpool(cluster,poolsize)
poolobj = parpool(__)
```

Description
parpool enables the full functionality of the parallel language features (parfor and spmd) in MATLAB by creating a special job on a pool of workers, and connecting the MATLAB client to the parallel pool.

parpool starts a pool using the current cluster profile, with the pool size specified by your parallel preferences and the current profile.

parpool(poolsize) overrides the number of workers specified in the preferences or profile, and starts a pool of exactly that number of workers, even if it has to wait for them to be available. Most clusters have a maximum number of workers they can start (12 for a local cluster). If the profile specifies a MATLAB job scheduler (MJS) cluster, parpool reserves its workers from among those already running and available under that MJS. If the profile specifies a local or third-party scheduler, parpool instructs the scheduler to start the workers for the pool.

parpool(profilename) or parpool(profilename,poolsize) starts a worker pool using the cluster profile identified by profilename.

parpool(cluster) or parpool(cluster,poolsize) starts a worker pool on the cluster specified by the cluster object cluster.
poolobj = parpool(__) returns a parallel.Pool object to the client workspace representing the pool on the cluster. You can use the pool object to programatically delete the pool or to access its properties.

Tips

- The pool status indicator in the lower-left corner of the desktop shows the client session connection to the pool and the pool status. Click the icon for a menu of supported pool actions.

 ![Pool Status Indicator](image)

 With a pool running:

 With no pool running:

- If you set your parallel preferences to automatically create a parallel pool when necessary, you do not need to explicitly call the `parpool` command. You might explicitly create a pool to control when you incur the overhead time of setting it up, so the pool is ready for subsequent parallel language constructs.

- `delete(poolobj)` shuts down the parallel pool. Without a parallel pool, `spmd` and `parfor` run as a single thread in the client, unless your parallel preferences are set to automatically start a parallel pool for them.

- When you use the MATLAB editor to update files on the client that are attached to a parallel pool, those updates automatically propagate to the workers in the pool.

- When connected to a parallel pool, the following commands entered in the client Command Window also execute on all the workers in the pool:
 - `cd`
 - `addpath`
 - `rmpath`
This behavior allows you to set the working folder and the command search path on all the workers, so that subsequent parfor-loops execute in the proper context.

If any of these commands does not work on the client, it is not executed on the workers either. For example, if addpath specifies a folder that the client cannot access, the addpath command is not executed on the workers. However, if the working directory or path can be set on the client, but cannot be set as specified on any of the workers, you do not get an error message returned to the client Command Window.

This slight difference in behavior might be an issue in a mixed-platform environment where the client is not the same platform as the workers, where folders local to or mapped from the client are not available in the same way to the workers, or where folders are in a nonshared file system. For example, if you have a MATLAB client running on a Microsoft Windows operating system while the MATLAB workers are all running on Linux® operating systems, the same argument to addpath cannot work on both. In this situation, you can use the function pctRunOnAll to assure that a command runs on all the workers.

Another difference between client and workers is that any addpath arguments that are part of the matlabroot folder are not set on the workers. The assumption is that the MATLAB install base is already included in the workers’ paths. The rules for addpath regarding workers in the pool are:

- Subfolders of the matlabroot folder are not sent to the workers.
- Any folders that appear before the first occurrence of a matlabroot folder are added to the top of the path on the workers.
- Any folders that appear after the first occurrence of a matlabroot folder are added after the matlabroot group of folders on the workers’ paths.
For example, suppose that `matlabroot` on the client is `C:\Applications\matlab\`. With an open parallel pool, execute the following to set the path on the client and all workers:

```matlab
addpath('P1',
    'P2',
    'C:\Applications\matlab\T3',
    'C:\Applications\matlab\T4',
    'P5',
    'C:\Applications\matlab\T6',
    'P7',
    'P8');
```

Because `T3`, `T4`, and `T6` are subfolders of `matlabroot`, they are not set on the workers’ paths. So on the workers, the pertinent part of the path resulting from this command is:

```
P1
P2
<worker original matlabroot folders...>
P5
P7
P8
```

Input Arguments

- **poolsize** - Size of parallel pool
 - Set in parallel preferences or parallel profile (default)
 - Size of the parallel pool, specified as a numeric value.

 Data Types
 - `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

- **profilename** - Profile that defines cluster and properties
 - Current profile (default) | string
 - Profile that defines cluster and properties, specified as a string.

 Example:

Data Types

char

cluster - Cluster to start pool on

cluster object

Cluster to start pool on, specified as a cluster object

Example: c = parcluster();

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'AttachedFiles',{'myFun.m'}

‘AttachedFiles’ - Files to attach to pool

string or cell array of strings

Files to attach to pool, specified as a string or cell array of strings.

With this argument pair, parpool starts a parallel pool and passes the identified files to the workers in the pool. The files specified here are appended to the AttachedFiles property specified in the applicable parallel profile to form the complete list of attached files. The ‘AttachedFiles’ property name is case sensitive, and must appear as shown.

Example: {'myFun.m','myFun2.m'}

Data Types

char | cell

‘SpmdEnabled’ - Indication if pool is enabled to support SPMD

true (default) | false

Indication if pool is enabled to support SPMD, specified as a logical. You can disable support only on a local or MJS cluster. Because
parfor iterations do not involve interworker communication, disabling SPMD support this way allows the parallel pool to keep evaluating a parfor-loop even if one or more workers aborts during loop execution.

Data Types

- logical

Output Arguments

- **poolobj** - Access to parallel pool from client
 - parallel.Pool object

 Access to parallel pool from client, returned as a parallel.Pool object.

Examples

Create Pool from Default Profile

Start a parallel pool using the default profile to define the number of workers.

```matlab
parpool
```

Create Pool from Specified Profile

Start a parallel pool of 16 workers using a profile called `myProf`.

```matlab
parpool('myProf',16)
```

Create Pool from Local Profile

Start a parallel pool of 2 workers using the local profile.

```matlab
parpool('local',2)
```

Create Pool on Specified Cluster

Create an object representing the cluster identified by the default profile, and use that cluster object to start a parallel pool. The pool size is determined by the default profile.

```matlab
c = parcluster
parpool(c)
```
Create Pool and Attach Files
Start a parallel pool with the default profile, and pass two code files to the workers.

```matlab
parpool('AttachedFiles', {'mod1.m', 'mod2.m'})
```

Return Pool Object and Delete Pool
Create a parallel pool with the default profile, and later delete the pool.

```matlab
poolobj = parpool;
delete(poolobj)
```

Determine Size of Current Pool
Find the number of workers in the current parallel pool.

```matlab
poolobj = gcp('nocreate'); % If no pool, do not create new one.
if isempty(poolobj)
    poolsize = 0;
else
    poolsize = poolobj.NumWorkers
end
```

See Also
Composite | delete | distributed | gcp | parallel.defaultClusterProfile | parfor | parfeval | parfevalOnAll | pctRunOnAll | spmd

Concepts
- “Parallel Preferences” on page 6-12
- “Clusters and Cluster Profiles” on page 6-14
- “Pass Data to and from Worker Sessions” on page 7-18
Purpose
Pause MATLAB job scheduler queue

Syntax
pause(mjs)

Arguments
mjs
MATLAB job scheduler object whose queue is paused.

Description
pause(mjs) pauses the MATLAB job scheduler’s queue so that jobs waiting in the queued state will not run. Jobs that are already running also pause, after completion of tasks that are already running. No further jobs or tasks will run until the resume function is called for the MJS.

The pause function does nothing if the job manager is already paused.

See Also
resume | wait
Purpose
Configure settings for Parallel Computing Toolbox client session

Syntax
pctconfig('p1', v1, ...)
config = pctconfig('p1', v1, ...)
config = pctconfig()

Arguments
$p1$ Property to configure. Supported properties are 'portrange', 'hostname'.
$v1$ Value for corresponding property.
$config$ Structure of configuration value.

Description
pctconfig('p1', v1, ...) sets the client configuration property $p1$
with the value $v1$.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are the property names and the field values specify the property
values.

If the property is 'portrange', the specified value is used to set the
range of ports to be used by the client session of Parallel Computing
Toolbox software. This is useful in environments with a limited choice
of ports. The value of 'portrange' should either be a 2-element vector
[minport, maxport] specifying the range, or 0 to specify that the
client session should use ephemeral ports. By default, the client session
searches for available ports to communicate with the other sessions of
MATLAB Distributed Computing Server software.

If the property is 'hostname', the specified value is used to set the
hostname for the client session of Parallel Computing Toolbox software.
This is useful when the client computer is known by more than one
hostname. The value you should use is the hostname by which the
cluster nodes can contact the client computer. The toolbox supports
both short hostnames and fully qualified domain names.
config = pctconfig('p1', v1, ...) returns a structure to config. The field names of the structure reflect the property names, while the field values are set to the property values.

config = pctconfig(), without any input arguments, returns all the current values as a structure to config. If you have not set any values, these are the defaults.

Tips
The values set by this function do not persist between MATLAB sessions. To guarantee its effect, call pctconfig before calling any other Parallel Computing Toolbox functions.

Examples
View the current settings for hostname and ports.

```matlab
config = pctconfig()
config =
    portrange: [27370 27470]
    hostname: 'machine32'
```

Set the current client session port range to 21000-22000 with hostname fdm4.

```matlab
pctconfig('hostname', 'fdm4', 'portrange', [21000 22000]);
```

Set the client hostname to a fully qualified domain name.

```matlab
pctconfig('hostname', 'desktop24.subnet6.companydomain.com');
```
Purpose
Clean up after deployed parallel applications

Syntax
```
pctRunDeployedCleanup
```

Description
`pctRunDeployedCleanup` performs necessary cleanup so that the client JVM can properly terminate when the deployed application exits. All deployed applications that use Parallel Computing Toolbox functionality need to call `pctRunDeployedCleanup` after the last call to Parallel Computing Toolbox functionality.

After calling `pctRunDeployedCleanup`, you should not use any further Parallel Computing Toolbox functionality in the current MATLAB session.
Purpose

Run command on client and all workers in parallel pool

Syntax

pctRunOnAll command

Description

pctRunOnAll command runs the specified command on all the workers of the parallel pool as well as the client, and prints any command-line output back to the client Command Window. The specified command runs in the base workspace of the workers and does not have any return variables. This is useful if there are setup changes that need to be performed on all the workers and the client.

Note If you use pctRunOnAll to run a command such as addpath in a mixed-platform environment, it can generate a warning on the client while executing properly on the workers. For example, if your workers are all running on Linux operating systems and your client is running on a Microsoft Windows operating system, an addpath argument with Linux-based paths will warn on the Windows-based client.

Examples

Clear all loaded functions on all workers:

pctRunOnAll clear functions

Change the directory on all workers to the project directory:

pctRunOnAll cd /opt/projects/c1456

Add some directories to the paths of all the workers:

pctRunOnAll addpath({'/usr/share/path1' '/usr/share/path2'})

See Also

parpool
pload

Purpose
Load file into parallel session

Syntax
pload(fileroot)

Arguments
fileroott Part of filename common to all saved files being loaded.

Description
pload(fileroot) loads the data from the files named [fileroott num2str(labindex)] into the workers running a parallel job. The files should have been created by the psave command. The number of workers should be the same as the number of files. The files should be accessible to all the workers. Any codistributed arrays are reconstructed by this function. If fileroott contains an extension, the character representation of the labindex will be inserted before the extension. Thus, pload('abc') attempts to load the file abc1.mat on worker 1, abc2.mat on worker 2, and so on.

Examples
Create three variables — one replicated, one variant, and one codistributed. Then save the data. (This example works in a communicating job or in pmode, but not in a parfor or spmd block.)

```matlab
clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');
```

This creates three files (threeThings1.mat, threeThings2.mat, threeThings3.mat) in the current working directory.

Clear the workspace on all the workers and confirm there are no variables.

```matlab
clear all
whos
```
Load the previously saved data into the workers. Confirm its presence.

```matlab
pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)
```

See Also

load | save | labindex | numlabs | pmode | psave
Purpose
Interactive Parallel Command Window

Syntax
- `pmode start`
- `pmode start numworkers`
- `pmode start prof numworkers`
- `pmode quit`
- `pmode exit`
- `pmode client2lab clientvar workers workervar`
- `pmode lab2client workervar worker clientvar`
- `pmode cleanup prof`

Description
`pmode` allows the interactive parallel execution of MATLAB commands. `pmode` achieves this by defining and submitting a parallel job, and opening a Parallel Command Window connected to the workers running the job. The workers then receive commands entered in the Parallel Command Window, process them, and send the command output back to the Parallel Command Window. Variables can be transferred between the MATLAB client and the workers.

`pmode start` starts `pmode`, using the default profile to define the cluster and number of workers. (The initial default profile is `local`; you can change it by using the function `parallel.defaultClusterProfile`.) You can also specify the number of workers using `pmode start numworkers`, but note that the local cluster allows for only up to twelve workers.

`pmode start prof numworkers` starts `pmode` using the Parallel Computing Toolbox profile `prof` to locate the cluster, submits a communicating job with the number of workers identified by `numworkers`, and connects the Parallel Command Window with the workers. If the number of workers is specified, it overrides the minimum and maximum number of workers specified in the profile.

`pmode quit` or `pmode exit` stops the `pmode` job, deletes it, and closes the Parallel Command Window. You can enter this command at the MATLAB prompt or the `pmode` prompt.

`pmode client2lab clientvar workers workervar` copies the variable `clientvar` from the MATLAB client to the variable `workervar` on the
workers identified by workers. If workervar is omitted, the copy is named clientvar. workers can be either a single index or a vector of indices. You can enter this command at the MATLAB prompt or the pmode prompt.

pmode lab2client workervar worker clientvar copies the variable workervar from the worker identified by worker, to the variable clientvar on the MATLAB client. If clientvar is omitted, the copy is named workervar. You can enter this command at the MATLAB prompt or the pmode prompt. Note: If you use this command in an attempt to transfer a codistributed array to the client, you get a warning, and only the local portion of the array on the specified worker is transferred. To transfer an entire codistributed array, first use the gather function to assemble the whole array into the worker workspaces.

pmode cleanup prof deletes all parallel jobs created by pmode for the current user running on the cluster specified in the profile prof, including jobs that are currently running. The profile is optional; the default profile is used if none is specified. You can enter this command at the MATLAB prompt or the pmode prompt.

You can invoke pmode as either a command or a function, so the following are equivalent.

pmode start prof 4
pmode('start', 'prof', 4)

Examples

In the following examples, the pmode prompt (P>>) indicates commands entered in the Parallel Command Window. Other commands are entered in the MATLAB Command Window.

Start pmode using the default profile to identify the cluster and number of workers.

pmode start

Start pmode using the local profile with four local workers.

pmode start local 4
Start pmode using the profile myProfile and eight workers on the cluster.

```matlab
pmode start myProfile 8
```

Execute a command on all workers.

```matlab
P>> x = 2*labindex;
```

Copy the variable `x` from worker 7 to the MATLAB client.

```matlab
pmode lab2client x 7
```

Copy the variable `y` from the MATLAB client to workers 1 through 8.

```matlab
pmode client2lab y 1:8
```

Display the current working directory of each worker.

```matlab
P>> pwd
```

See Also

- createCommunicatingJob
- parallel.defaultClusterProfile
- parcluster
Purpose
File for user-defined options to run on each worker when parallel pool starts

Syntax
poolStartup

Description
poolStartup runs automatically on a worker each time the worker forms part of a parallel pool. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the poolStartup.m file to define pool initialization on the worker. The worker looks for poolStartup.m in the following order, executing the one it finds first:

1. Included in the job’s AttachedFiles property.
2. In a folder included in the job’s AdditionalPaths property.
3. In the worker’s MATLAB installation at the location

 `matlabroot/toolbox/distcomp/user/poolStartup.m`

To create a version of poolStartup.m for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required.

poolStartup is the ideal location for startup code required for parallel execution on the parallel pool. For example, you might want to include code for using mpiSettings. Because jobStartup and taskStartup execute before poolStartup, they are not suited to pool-specific code. In other words, you should use taskStartup for setup code on your worker regardless of whether the task is from a distributed job, parallel job, or using a parallel pool; while poolStartup is for setup code for pool usage only.

For further details on poolStartup and its implementation, see the text in the installed poolStartup.m file.

See Also
jobStartup | taskFinish | taskStartup
Purpose

Promote job in MJS cluster queue

Syntax

promote(c, job)

Arguments

c The MJS cluster object that contains the job.
job Job object promoted in the queue.

Description

promote(c, job) promotes the job object job, that is queued in the MJS cluster c.

If job is not the first job in the queue, promote exchanges the position of job and the previous job.

Tips

After a call to promote or demote, there is no change in the order of job objects contained in the Jobs property of the MJS cluster object. To see the scheduled order of execution for jobs in the queue, use the findJob function in the form

\[
\text{[pending queued running finished]} = \text{findJob}(c).
\]

Examples

Create and submit multiple jobs to the cluster identified by the default cluster profile, assuming that the default cluster profile uses an MJS:

\[
c = \text{parcluster}();
j1 = \text{createJob}(c, \text{'name'}, \text{'Job A'});
j2 = \text{createJob}(c, \text{'name'}, \text{'Job B'});
j3 = \text{createJob}(c, \text{'name'}, \text{'Job C'});
\text{submit}(j1); \text{submit}(j2); \text{submit}(j3);
\]

Promote Job C by one position in its queue:

\[
\text{promote}(c, j3)
\]

Examine the new queue sequence:

\[
[\text{pjobs, qjobs, rjobs, fjobs}] = \text{findJob}(c);
\text{get(qjobs, 'Name')}
\]
'Job A'
'Job C'
'Job B'

See Also
createJob | demote | findJob | submit
psave

Purpose
Save data from parallel job session

Syntax
```
psave(fileroot)
```

Arguments
- **fileroot** Part of filename common to all saved files.

Description
`psave(fileroot)` saves the data from the workers' workspace into the files named `[fileroot num2str(labindex)]`. The files can be loaded by using the `pload` command with the same `fileroot`, which should point to a folder accessible to all the workers. If `fileroot` contains an extension, the character representation of the `labindex` is inserted before the extension. Thus, `psave('abc')` creates the files `'abc1.mat'`, `'abc2.mat'`, etc., one for each worker.

Examples
Create three arrays — one replicated, one variant, and one codistributed. Then save the data. (This example works in a communicating job or in pmode, but not in a `parfor` or `spmd` block.)

```matlab
clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');
```

This creates three files (`threeThings1.mat`, `threeThings2.mat`, `threeThings3.mat`) in the current working folder.

Clear the workspace on all the workers and confirm there are no variables.

```matlab
clear all
whos
```
Load the previously saved data into the workers. Confirm its presence.

\[\text{pload('threeThings')} \];
\[\text{whos} \]
\[\text{isreplicated(rep)} \]
\[\text{iscodistributed(D)} \]

See Also

load | save | labindex | numlabs | pmode | pload
Purpose

Redistribute codistributed array with another distribution scheme

Syntax

\[D2 = \text{redistribute}(D1, \text{codist}) \]

Description

\[D2 = \text{redistribute}(D1, \text{codist}) \]

redistributes a codistributed array \(D1 \) and returns \(D2 \) using the distribution scheme defined by the codistributor object \(\text{codist} \).

Examples

Redistribute an array according to the distribution scheme of another array.

```matlab
spmd
    % First, create a magic square distributed by columns:
    M = codistributed(magic(10), codistributor1d(2, [1 2 3 4]));

    % Create a pascal matrix distributed by rows (first dimension):
    P = codistributed(pascal(10), codistributor1d(1));

    % Redistribute the pascal matrix according to the
    % distribution (partition) scheme of the magic square:
    R = redistribute(P, getCodistributor(M));
end
```

See Also

codistributed | codistributor | codistributor1d.defaultPartition
Purpose
Reset GPU device and clear its memory

Syntax
reset(gpudev)

Description
reset(gpudev) resets the GPU device and clears its memory of
gpuArray and CUDAKernel data. The GPU device identified by gpudev
remains the selected device, but all gpuArray and CUDAKernel objects
in MATLAB representing data on that device are invalid.

Arguments
 gpudev GPUDevice object representing the currently selected
device

Tips
After you reset a GPU device, any variables representing arrays or
kernels on the device are invalid; you should clear or redefine them.

Examples
Reset GPU Device
Create a gpuArray on the selected GPU device, then reset the device.

```matlab
   g = gpuDevice(1);
   M = gpuArray(magic(4));
   M   % Display gpuArray
         16 2  3  13
          5 11 10  8
          9  7  6 12
          4 14 15  1
   reset(g);
   g   % Show that the device is still selected
```

parallel.gpu.CUDADevice handle
Package: parallel.gpu

Properties:
Name: 'Tesla C1060'
Index: 1
ComputeCapability: '1.3'
SupportsDouble: 1
DriverVersion: 5
ToolkitVersion: 5
MaxThreadsPerBlock: 512
MaxShmemPerBlock: 16384
MaxThreadBlockSize: [512 512 64]
MaxGridSize: [65535 65535 1]
SIMDWidth: 32
TotalMemory: 4.2948e+09
FreeMemory: 4.2091e+09
MultiprocessorCount: 30
ClockRateKHz: 1296000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 0
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1

whos %Show that the gpuArray variable name
 %is still in the MATLAB workspace

 Name Size Bytes Class Attributes
 g 1x1 112 parallel.gpu.CUDADevice
 M 1x1 108 gpuArray

M % Try to display gpuArray
Data no longer exists on the GPU.

clear M

See Also gpuDevice | gpuArray | parallel.gpu.CUDAKernel
Purpose
Resume processing queue in MATLAB job scheduler

Syntax
`resume(mjs)`

Arguments
mjs
MATLAB job scheduler object whose queue is resumed.

Description
`resume(mjs)` resumes processing of the specified MATLAB job scheduler’s queue so that jobs waiting in the queued state will be run. This call will do nothing if the MJS is not paused.

See Also
`pause` | `wait`
saveAsProfile

Purpose
Save cluster properties to specified profile

Description
`saveAsProfile(cluster,profileName)` saves the properties of the cluster object to the specified profile, and updates the cluster `Profile` property value to indicate the new profile name.

Examples
Create a cluster, then modify a property and save the properties to a new profile.

```matlab
myCluster = parcluster('local');
myCluster.NumWorkers = 3;
saveAsProfile(myCluster,'local2');
```

See Also
`parcluster` | `saveProfile`
Purpose

Save modified cluster properties to its current profile

Description

saveProfile(cluster) saves the modified properties on the cluster object to the profile specified by the cluster's Profile property, and sets the Modified property to false. If the cluster's Profile property is empty, an error is thrown.

Examples

Create a cluster, then modify a property and save the change to the profile.

myCluster = parcluster('local');
myCluster.NumWorkers = 3; % 'Modified' property now TRUE
saveProfile(myCluster); % 'local' profile now updated,
 % 'Modified' property now FALSE

See Also

parcluster | saveAsProfile
Purpose
Set some constant memory on GPU

Syntax
```
setConstantMemory(kern,sym,val)
setConstantMemory(kern,sym1,val1,sym2,val2,...)
```

Description
```
setConstantMemory(kern,sym,val) sets the constant memory in the
CUDA kernel kern with symbol name sym to contain the data in val.
val can be any numeric array, including a gpuArray. The command
errors if the named symbol does not exist or if it is not big enough to
contain the specified data. Partially filling a constant is allowed.

There is no automatic data-type conversion for constant memory, so it
is important to make sure that the supplied data is of the correct type
for the constant memory symbol being filled.

setConstantMemory(kern,sym1,val1,sym2,val2,...) sets multiple
constant symbols.
```

Examples
If KERN represents a CUDA kernel whose CU file defines the following
constants:

```
__constant__ int N;
__constant__ double CONST_DATA[256];
```

you can fill these with MATLAB data as follows:

```
KERN = parallel.gpu.CUDAKernel(ptxFile, cudaFile);
setConstantMemory(KERN,'N',int16(10));
setConstantMemory(KERN,'CONST_DATA',1:10);
```
or
```
setConstantMemory(KERN,'N',int16(10),'CONST_DATA',1:10);
```

See Also
gpuArray | parallel.gpu.CUDAKernel
Purpose
Set specific user data for job on generic cluster

Syntax
`setJobClusterData(cluster,job,userdata)`

Arguments
- `cluster` Cluster object identifying the generic third-party cluster running the job
- `job` Job object identifying the job for which to store data
- `userdata` Information to store for this job

Description
`setJobClusterData(cluster,job,userdata)` stores data for the job that is running on the generic cluster `cluster`. You can later retrieve the information with the function `getJobClusterData`. For example, it might be useful to store the third-party scheduler’s external ID for this job, so that the function specified in `GetJobStateFcn` can later query the scheduler about the state of the job. Or the stored data might be an array with the scheduler’s ID for each task in the job.

You should call the function `setJobClusterData` in the submit function (identified by the `IndependentSubmitFcn` or `CommunicatingSubmitFcn` property) and call `getJobClusterData` in any of the functions identified by the properties `GetJobStateFcn`, `DeleteJobFcn`, `DeleteTaskFcn`, `CancelJobFcn`, or `CancelTaskFcn`.

For more information and examples on using these functions and properties, see “Manage Jobs with Generic Scheduler” on page 7-38.

See Also
`getJobClusterData`
Purpose
Size of object array

Syntax
\[
\begin{align*}
\text{d} &= \text{size} (\text{obj}) \\
[m,n] &= \text{size} (\text{obj}) \\
[m_1,m_2,m_3,...,m_n] &= \text{size} (\text{obj}) \\
m &= \text{size} (\text{obj}, \text{dim})
\end{align*}
\]

Arguments
- \textit{obj}: An object or an array of objects.
- \textit{dim}: The dimension of \textit{obj}.
- \textit{d}: The number of rows and columns in \textit{obj}.
- \textit{m}: The number of rows in \textit{obj}, or the length of the dimension specified by \textit{dim}.
- \textit{n}: The number of columns in \textit{obj}.
- \textit{m_1,m_2,m_3,...,m_n}: The lengths of the first \textit{n} dimensions of \textit{obj}.

Description
- \textit{d} = \text{size} (\text{obj}) returns the two-element row vector \textit{d} containing the number of rows and columns in \textit{obj}.
- \textit{[m,n]} = \text{size} (\text{obj}) returns the number of rows and columns in separate output variables.
- \textit{[m_1,m_2,m_3,...,m_n]} = \text{size} (\text{obj}) returns the length of the first \textit{n} dimensions of \textit{obj}.
- \textit{m} = \text{size} (\text{obj}, \text{dim}) returns the length of the dimension specified by the scalar \textit{dim}. For example, \text{size} (\text{obj}, 1) returns the number of rows.

See Also
- \text{length}
Purpose
Create sparse distributed or codistributed matrix

Syntax
- `SD = sparse(FD)`
- `SC = sparse(m,n,codist)`
- `SC = sparse(m,n,codist,'noCommunication')`
- `SC = sparse(i,j,v,m,n,nzmax)`
- `SC = sparse(i,j,v,m,n)`
- `SC = sparse(i,j,v)`

Description
- `SD = sparse(FD)` converts a full distributed or codistributed array `FD` to a sparse distributed or codistributed (respectively) array `SD`.

- `SC = sparse(m,n,codist)` creates an \(m \times n \) sparse codistributed array of underlying class double, distributed according to the scheme defined by the codistributor `codist`. For information on constructing codistributor objects, see the reference pages for `codistributor1d` and `codistributor2dbc`. This form of the syntax is most useful inside `spmd`, `pmode`, or a parallel job.

- `SC = sparse(m,n,codist,'noCommunication')` creates an \(m \times n \) sparse codistributed array in the manner specified above, but does not perform any global communication for error checking when constructing the array. This form of the syntax is most useful inside `spmd`, `pmode`, or a parallel job.

- `SC = sparse(i,j,v,m,n,nzmax)` uses vectors `i` and `j` to specify indices, and `v` to specify element values, for generating an \(m \times n \) sparse matrix such that `SC(i(k),j(k)) = v(k)`, with space allocated for `nzmax` nonzeros. If any of the input vectors `i`, `j`, or `v` is codistributed, the output sparse matrix `SC` is codistributed. Vectors `i`, `j`, and `v` must be the same length. Any elements of `v` that are zero are ignored, along with the corresponding values of `i` and `j`. Any elements of `v` that have duplicate values of `i` and `j` are added together.

To simplify this six-argument call, you can pass scalars for the argument `v` and one of the arguments `i` or `j`, in which case they are expanded so that `i`, `j`, and `v` all have the same length.
SC = sparse(i, j, v, m, n) uses nzmax = max([length(i) length(j)]).

SC = sparse(i, j, v) uses m = max(i) and n = max(j). The maxima are computed before any zeros in v are removed, so one of the rows of [i j v] might be [m n 0], assuring the matrix size satisfies the requirements of m and n.

Note To create a sparse codistributed array of underlying class logical, first create an array of underlying class double and then cast it using the logical function:

```matlab
spmd
    SC = logical(sparse(m, n, codistributor1d()));
end
```

Examples

With four workers,

```matlab
spmd(4)
    C = sparse(1000, 1000, codistributor1d())
end
```

creates a 1000-by-1000 codistributed sparse double array C. C is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece of C.

```matlab
spmd(4)
    codist = codistributor1d(2, 1:numlabs)
    C = sparse(10, 10, codist);
end
```

creates a 10-by-10 codistributed sparse double array C, distributed by its columns. Each worker contains a 10-by-1labindex local piece of C.

Convert a distributed array into a sparse distributed array:
R = distributed.rand(1000);
D = floor(2*R); % D also is distributed
SD = sparse(D); % SD is sparse distributed

Create a sparse codistributed array from vectors of indices and a
distributed array of element values:

r = [1 1 4 4 8];
c = [1 4 1 4 8];
v = [10 20 30 40 0];
V = distributed(v);
spmd
 SC = sparse(r,c,V);
end

In this example, even though the fifth element of the value array v is 0,
the size of the result is an 8–by-8 matrix because of the corresponding
maximum indices in r and c. Matrix SC is considered codistributed when
viewed inside an spmd block, and distributed when viewed from the
client workspace. To view a full version of the matrix, the full function
converts this distributed sparse array to a full distributed array:

S = full(SC)

10 0 0 20 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
30 0 0 40 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

See Also
sparse | distributed.spalloc | codistributed.spalloc
Purpose
Execute code in parallel on workers of parallel pool

Syntax
- `spmd`, `statements`, `end`
- `spmd(n)`, `statements`, `end`
- `spmd(m, n)`, `statements`, `end`

Description
The general form of an `spmd` (single program, multiple data) statement is:

```matlab
spmd
    statements
end
```

`spmd`, `statements`, `end` defines an `spmd` statement on a single line. MATLAB executes the `spmd` body denoted by `statements` on several MATLAB workers simultaneously. The `spmd` statement can be used only if you have Parallel Computing Toolbox. To execute the statements in parallel, you must first open a pool of MATLAB workers using `parpool` or have your parallel preferences allow the automatic start of a pool.

Inside the body of the `spmd` statement, each MATLAB worker has a unique value of `labindex`, while `numlabs` denotes the total number of workers executing the block in parallel. Within the body of the `spmd` statement, communication functions for parallel jobs (such as `labSend` and `labReceive`) can transfer data between the workers.

Values returning from the body of an `spmd` statement are converted to `Composite` objects on the MATLAB client. A `Composite` object contains references to the values stored on the remote MATLAB workers, and those values can be retrieved using cell-array indexing. The actual data on the workers remains available on the workers for subsequent `spmd` execution, so long as the `Composite` exists on the client and the parallel pool remains open.

By default, MATLAB uses as many workers as it finds available in the pool. When there are no MATLAB workers available, MATLAB executes the block body locally and creates `Composite` objects as necessary.
spmd(n), statements, end uses n to specify the exact number of MATLAB workers to evaluate statements, provided that n workers are available from the parallel pool. If there are not enough workers available, an error is thrown. If n is zero, MATLAB executes the block body locally and creates Composite objects, the same as if there is no pool available.

spmd(m, n), statements, end uses a minimum of m and a maximum of n workers to evaluate statements. If there are not enough workers available, an error is thrown. m can be zero, which allows the block to run locally if no workers are available.

For more information about spmd and Composite objects, see “Distributed Arrays and SPMD”.

Tips

- An spmd block runs on the workers of the existing parallel pool. If no pool exists, spmd will start a new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If there is no parallel pool and spmd cannot start one, the code runs serially in the client session.

- If the AutoAttachFiles property in the cluster profile for the parallel pool is set to true, MATLAB performs an analysis on an spmd block to determine what code files are necessary for its execution, then automatically attaches those files to the parallel pool job so that the code is available to the workers.

- For information about restrictions and limitations when using spmd, see “Limitations” on page 3-14.

Examples

Perform a simple calculation in parallel, and plot the results:

```matlab
parpool(3)
spmd
    % build magic squares in parallel
    q = magic(labindex + 2);
end
for ii=1:length(q)
    % plot each magic square
```
figure, imagesc(q{ii});
end
delete(gca)

See Also batch | Composite | labindex | parpool | numlabs | parfor
Purpose
Queue job in scheduler

Syntax
`submit(j)`

Arguments
`j` Job object to be queued.

Description
`submit(j)` queues the job object `j` in its cluster queue. The cluster used for this job was determined when the job was created.

Tips
When a job is submitted to a cluster queue, the job’s `State` property is set to `queued`, and the job is added to the list of jobs waiting to be executed.

The jobs in the waiting list are executed in a first in, first out manner; that is, the order in which they were submitted, except when the sequence is altered by `promote`, `demote`, `cancel`, or `delete`.

Examples
Find the MJS cluster identified by the cluster profile `Profile1`.

```matlab
c1 = parcluster('Profile1');
```

Create a job object in this cluster.

```matlab
j1 = createJob(c1);
```

Add a task object to be evaluated for the job.

```matlab
t1 = createTask(j1,@rand,1,{8,4});
```

Queue the job object in the cluster for execution.

```matlab
submit(j1);
```

See Also
createCommunicatingJob | createJob | findJob | parcluster | promote
subsasgn

Purpose
Subscripted assignment for Composite

Syntax
- \(C(i) = \{B\} \)
- \(C(1:end) = \{B\} \)
- \(C([i1, i2]) = \{B1, B2\} \)
- \(C\{i\} = B \)

Description
subsasgn assigns remote values to Composite objects. The values reside on the workers in the current parallel pool.

- \(C(i) = \{B\} \) sets the entry of \(C \) on worker \(i \) to the value \(B \).
- \(C(1:end) = \{B\} \) sets all entries of \(C \) to the value \(B \).
- \(C([i1, i2]) = \{B1, B2\} \) assigns different values on workers \(i1 \) and \(i2 \).
- \(C\{i\} = B \) sets the entry of \(C \) on worker \(i \) to the value \(B \).

See Also
subsasgn | Composite | subsref
Purpose: Subscripted reference for Composite

Syntax:

\[B = C(i) \]
\[B = C([i_1, i_2, \ldots]) \]
\[B = C\{i\} \]
\[[B_1, B_2, \ldots] = C\{[i_1, i_2, \ldots]\} \]

Description: `subsref` retrieves remote values of a Composite object from the workers in the current parallel pool.

- `B = C(i)` returns the entry of Composite C from worker i as a cell array.
- `B = C([i_1, i_2, \ldots])` returns multiple entries as a cell array.
- `B = C\{i\}` returns the value of Composite C from worker i as a single entry.
- `[B_1, B_2, \ldots] = C\{[i_1, i_2, \ldots]\}` returns multiple entries.

See Also: `subsref` | `Composite` | `subsasgn`
taskFinish

<table>
<thead>
<tr>
<th>Purpose</th>
<th>User-defined options to run on worker when task finishes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>taskFinish(task)</td>
</tr>
<tr>
<td>Arguments</td>
<td>task The task being evaluated by the worker</td>
</tr>
</tbody>
</table>

Description

`taskFinish(task)` runs automatically on a worker each time the worker finishes evaluating a task for a particular job. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the `taskFinish.m` file to define anything you want executed on the worker when a task is finished. The worker looks for `taskFinish.m` in the following order, executing the one it finds first:

1. Included in the job’s AttachedFiles property.
2. In a folder included in the job’s AdditionalPaths property.
3. In the worker’s MATLAB installation at the location

 `matlabroot/toolbox/distcomp/user/taskFinish.m`

To create a version of `taskFinish.m` for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required. For further details on `taskFinish` and its implementation, see the text in the installed `taskFinish.m` file.

See Also

`jobStartup` | `poolStartup` | `taskStartup`
Purpose
User-defined options to run on worker when task starts

Syntax
taskStartup(task)

Arguments
task The task being evaluated by the worker.

Description
taskStartup(task) runs automatically on a worker each time the worker evaluates a task for a particular job. You do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the taskStartup.m file to define task initialization on the worker. The worker looks for taskStartup.m in the following order, executing the one it finds first:

1. Included in the job’s AttachedFiles property.
2. In a folder included in the job’s AdditionalPaths property.
3. In the worker’s MATLAB installation at the location

 matlabroot/toolbox/distcomp/user/taskStartup.m

To create a version of taskStartup.m for AttachedFiles or AdditionalPaths, copy the provided file and modify it as required. For further details on taskStartup and its implementation, see the text in the installed taskStartup.m file.

See Also
jobStartup | poolStartup | taskFinish
updateAttachedFiles

Purpose
Update attach files or folders on parallel pool

Syntax
updateAttachedFiles(poolobj)

Description
updateAttachedFiles(poolobj) checks all the attached files of the specified parallel pool to see if they have changed, and replicates any changes to each of the workers in the pool. This checks files that were attached (by a profile or parpool argument) when the pool was started and those subsequently attached with the addAttachedFiles command.

Input Arguments
- **poolobj** - Pool with attached files
 - *pool object*
 - Pool with attached files, specified as a pool object.
 - *Example: poolobj = gcp;*

Examples
Update Attached Files on Current Parallel Pool
Update all attached files on the current parallel pool.

```matlab
poolobj = gcp;
poolobj = gcp;
updateAttachedFiles(poolobj)
```

See Also
- addAttachedFiles | gcp | listAutoAttachedFiles | parpool

Concepts
- “Create and Modify Cluster Profiles” on page 6-18
Purpose
Wait for job to change state or for GPU calculation to complete

Syntax
```
wait(j)
wait(j,'state')
wait(j,'state',timeout)
wait(gpudev)
```

Arguments
- **j**: Job object whose change in state to wait for.
- **'state'**: Value of the job object’s State property to wait for.
- **timeout**: Maximum time to wait, in seconds.
- **gpudev**: GPU device object whose calculations to wait for.

Description
`wait(j)` blocks execution in the client session until the job identified by the object `j` reaches the 'finished' state or fails. This occurs when all the job’s tasks are finished processing on the workers.

`wait(j,'state')` blocks execution in the client session until the specified job object changes state to the value of 'state'. The valid states to wait for are 'queued', 'running', and 'finished'.

If the object is currently or has already been in the specified state, a wait is not performed and execution returns immediately. For example, if you execute `wait(j,'queued')` for a job already in the 'finished' state, the call returns immediately.

`wait(j,'state',timeout)` blocks execution until either the job reaches the specified 'state', or timeout seconds elapse, whichever happens first.

Note Simulink models cannot run while a MATLAB session is blocked by `wait`. If you must run Simulink from the MATLAB client while also running jobs, you cannot use `wait`.
wait(gpudev) blocks execution in MATLAB until the GPU device identified by the object gpudev completes its calculations. When gathering results from a GPU, MATLAB automatically waits until all GPU calculations are complete, so you do not need to explicitly call wait in that situation. You must use wait when you are timing GPU calculations to profile your code.

Examples

Submit a job to the queue, and wait for it to finish running before retrieving its results.

```
submit(j);
wait(j,'finished')
results = fetchOutputs(j)
```

Submit a batch job and wait for it to finish before retrieving its variables.

```
j = batch('myScript');
wait(j)
load(j)
```

See Also

pause | resume
Purpose
Wait for futures to complete

Syntax
OK = wait(F)
OK = wait(F,STATE)
OK = wait(F,STATE,TIMEOUT)

Description
OK = wait(F) blocks execution until each of the array of futures F has reached the 'finished' state. OK is true if the wait completed successfully, and false if any of the futures was cancelled or failed execution.

OK = wait(F,STATE) blocks execution until the array of futures F has reached the state STATE. Valid values for STATE are 'running' or 'finished'.

OK = wait(F,STATE,TIMEOUT) blocks execution for a maximum of TIMEOUT seconds. OK is set false if TIMEOUT is exceeded before STATE is reached, or if any of the futures was cancelled or failed execution.

See Also
parfeval | parfevalOnAll | fetchNext | fetchOutputs
Purpose
Copy mxArray to mxGPUArray

C Syntax
```
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyFromMxArray(mxArray const * const mp)
```

Arguments
mp
Pointer to an mxArray that contains either GPU or CPU data.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCopyFromMxArray produces a new mxGPUArray object with the same characteristics as the input mxArray.

- If the input mxArray contains a gpuArray, the output is a new copy of the data on the GPU.
- If the input mxArray contains numeric or logical CPU data, the output is copied to the GPU.

Either way, this function always allocates memory on the GPU and allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also
mxGPUCopyGPUArray | mxGPUDestroyGPUArray
Purpose
Duplicate (deep copy) `mxGPUArray` object

C Syntax
```c
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyGPUArray(mxGPUArray const * const mgp)
```

Arguments
mgp
Pointer to an `mxGPUArray`.

Returns
Pointer to an `mxGPUArray`.

Description
`mxGPUCopyGPUArray` produces a new array on the GPU and copies the data, and then returns a new `mxGPUArray` that refers to the copy. Use `mxGPUDestroyGPUArray` to delete the result when you are done with it.

See Also
`mxGPUCopyFromMxArray` | `mxGPUDestroyGPUArray`
mxGPUCopyImag (C)

Purpose
Copy imaginary part of mxGPUArray

C Syntax
```
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyImag(mxGPUArray const * const mgp)
```

Arguments
- **mgp**: Pointer to an mxGPUArray.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCopyImag copies the imaginary part of GPU data, and returns a new mxGPUArray object that refers to the copy. The returned array is real, with element values equal to the imaginary values of the input, similar to how the MATLAB `imag` function behaves. If the input is real rather than complex, the function returns an array of zeros.

Use `mxGPUDestroyGPUArray` to delete the result when you are done with it.

See Also
mxGPUCopyReal | mxGPUDestroyGPUArray
Purpose
Copy real part of `mxGPUArray`

C Syntax
```
#include "gpu/mxGPUArray.h"

mxGPUArray* mxGPUCopyReal(mxGPUArray const * const mgp)
```

Arguments
- **mgp**
 Pointer to an `mxGPUArray`.

Returns
Pointer to an `mxGPUArray`.

Description
`mxGPUCopyReal` copies the real part of GPU data, and returns a new `mxGPUArray` object that refers to the copy. If the input is real rather than complex, the function returns a copy of the input.

Use `mxGPUDestroyGPUArray` to delete the result when you are done with it.

See Also
- `mxGPUCopyImag`
- `mxGPUDestroyGPUArray`
mxGPUCreateComplexGPUArray (C)

Purpose
Create complex GPU array from two real gpuArrays

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCreateComplexGPUArray(mxGPUArray const * const mgpR,
 mxGPUArray const * const mgpI)

Arguments
mgpR
mgpI
Pointers to mxGPUArray data containing real and imaginary coefficients.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCreateComplexGPUArray creates a new complex mxGPUArray from two real mxGPUArray objects. The function allocates memory on the GPU and copies the data. The inputs must both be real, and have matching sizes and classes. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also
mxGPUDestroyGPUArray
Purpose
Create read-only mxGPUArray object from input mxArray

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray const * mxGPUCreateFromMxArray(mxArray const * const mp)

Arguments
mp
Pointer to an mxArray that contains either GPU or CPU data.

Returns
Pointer to a read-only mxGPUArray object.

Description
mxGPUCreateFromMxArray produces a read-only mxGPUArray object from an mxArray.

- If the input mxArray contains a gpuArray, this function extracts a reference to the GPU data from an mxArray passed as an input to the function.
- If the input mxArray contains CPU data, the data is copied to the GPU, but the returned object is still read-only.

If you need a writable copy of the array, use mxGPUCopyFromMxArray instead.

This function allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also
mxGPUCopyFromMxArray | mxGPUCreateGPUArray | mxGPUDestroyGPUArray
mxGPUCreateGPUArray (C)

Purpose
Create mxGPUArray object, allocating memory on GPU

C Syntax
```
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCreateGPUArray(mwSize const ndims,
    mwSize const * const dims,
    mxClassID const cid,
    mxComplexity const ccx,
    mxGPUInitialize const init0)
```

Arguments
- **ndims**
 mwSize type specifying the number of dimensions in the created mxGPUArray.
- **dims**
 Pointer to an mwSize vector specifying the sizes of each dimension in the created mxGPUArray.
- **cid**
 mxClassID type specifying the element class of the created mxGPUArray.
- **ccx**
 mxComplexity type specifying the complexity of the created mxGPUArray.
- **init0**
 mxGPUInitialize type specifying whether to initialize elements values to 0 in the created mxGPUArray.
 - A value of MX_GPU_INITIALIZE_VALUES specifies that elements are to be initialized to 0.
 - A value of MX_GPU_DO_NOT_INITIALIZE specifies that elements are not to be initialized.

Returns
Pointer to an mxGPUArray.
Description
mxGPUCreateGPUArray creates a new mxGPUArray object with the specified size, type, and complexity. It also allocates the required memory on the GPU, and initializes the memory if requested.

This function allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to delete the object when you are done with it.

See Also
mxGPUCreateFromMxArray | mxGPUDestroyGPUArray
mxGPUCreateMxArrayOnCPU (C)

Purpose
Create mxArray for returning CPU data to MATLAB with data from GPU

C Syntax
```
#include "gpu/mxGPUArray.h"
mxArray* mxGPUCreateMxArrayOnCPU(mxGPUArray const * const mgp)
```

Arguments
- `mgp`
 Pointer to an mxGPUArray.

Returns
Pointer to an mxArray object containing CPU data that is a copy of the GPU data.

Description
mxGPUCreateMxArrayOnCPU copies the GPU data from the specified mxGPUArray into an mxArray on the CPU for return to MATLAB. This is similar to the gather function. After calling this function, the input mxGPUArray object is no longer needed and you can delete it with mxGPUDestroyGPUArray.

See Also
- mxGPUCreateMxArrayOnGPU
- mxGPUDestroyGPUArray
Purpose
Create mxArray for returning GPU data to MATLAB

C Syntax
#include "gpu/mxGPUArray.h"
mxArray* mxGPUCreateMxArrayOnGPU(mxGPUArray const * const mgp)

Arguments
mgp
Pointer to an mxGPUArray.

Returns
Pointer to an mxArray object containing GPU data.

Description
mxGPUCreateMxArrayOnGPU puts the mxGPUArray into an mxArray for return to MATLAB. The data remains on the GPU and the returned class in MATLAB is gpuArray. After this call, the mxGPUArray object is no longer needed and can be destroyed.

See Also
mxGPUCreateMxArrayOnCPU | mxGPUDestroyGPUArray
mxGPUDestroyGPUArray (C)

Purpose
Delete mxGPUArray object

C Syntax
```
#include "gpu/mxGPUArray.h"
mxGPUDestroyGPUArray(mxGPUArray const * const mgp)
```

Arguments
mgp
Pointer to an mxGPUArray.

Description
mxGPUDestroyGPUArray deletes an mxGPUArray object on the CPU. Use this function to delete an mxGPUArray object you created with:

- mxGPUCreateGPUArray
- mxGPUCreateFromMxArray
- mxGPUCopyFromMxArray
- mxGPUCopyReal
- mxGPUCopyImag, or
- mxGPUCreateComplexGPUArray.

This function clears memory on the GPU, unless some other mxArray holds a reference to the same data. For example, if the mxArray was extracted from an input mxArray, or wrapped in an mxArray for an output, then the data remains on the GPU.

See Also
mxGPUCopyFromMxArray | mxGPUCopyImag | mxGPUCopyReal | mxGPUCreateComplexGPUArray | mxGPUCreateFromMxArray | mxGPUCreateGPUArray
Purpose
mxClassID associated with data on GPU

C Syntax
```c
#include "gpu/mxGPUArray.h"
mxClassID mxGPUGetClassID(mxGPUArray const * const mgp)
```

Arguments
mgp

 Pointer to an mxGPUArray.

Returns
mxClassID type.

Description
mxGPUGetClassID returns an mxClassID type indicating the underlying class of the input data.

See Also
mxGPUGetComplexity
mxGPUGetComplexity (C)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Complexity of data on GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Syntax</td>
<td><code>#include "gpu/mxGPUArray.h"</code></td>
</tr>
<tr>
<td></td>
<td><code>mxComplexity mxGPUGetComplexity(mxGPUArray const * const mgp)</code></td>
</tr>
<tr>
<td>Arguments</td>
<td><code>mgp</code></td>
</tr>
<tr>
<td></td>
<td>Pointer to an <code>mxGPUArray</code>.</td>
</tr>
<tr>
<td>Returns</td>
<td><code>mxComplexity</code> type.</td>
</tr>
<tr>
<td>Description</td>
<td><code>mxGPUGetComplexity</code> returns an <code>mxComplexity</code> type indicating the complexity of the GPU data.</td>
</tr>
<tr>
<td>See Also</td>
<td><code>mxGPUGetClassID</code></td>
</tr>
</tbody>
</table>
Purpose
Raw pointer to underlying data

C Syntax
#include "gpu/mxGPUArray.h"
void* mxGPUGetData(mxGPUArray const * const mgp)

Arguments
mgp
Pointer to an mxGPUArray on the GPU.

Returns
Pointer to data.

Description
mxGPUGetData returns a raw pointer to the underlying data. Cast this pointer to the type of data that you want to use on the device. It is your responsibility to check that the data inside the array has the appropriate type, for which you can use mxGPUGetClassID.

See Also
mxGPUGetClassID | mxGPUGetDataReadOnly
mxGPUGetDataReadOnly (C)

Purpose
Read-only raw pointer to underlying data

C Syntax
#include "gpu/mxGPUArray.h"

void const* mxGPUGetDataReadOnly(mxGPUArray const * const mgp)

Arguments
mgp
Pointer to an mxGPUArray on the GPU.

Returns
Read-only pointer to data.

Description
mxGPUGetDataReadOnly returns a read-only raw pointer to the underlying data. Cast it to the type of data that you want to use on the device. It is your responsibility to check that the data inside the array has the appropriate type, for which you can use mxGPUGetClassID.

See Also
mxGPUGetClassID | mxGPUGetData
Purpose
mxGPUArray dimensions

C Syntax
#include "gpu/mxGPUArray.h"
mwSize const * mxGPUGetDimensions(mxGPUArray const * const mgp)

Arguments
mgp
Pointer to an mxGPUArray.

Returns
Pointer to a read-only array of mwSize type.

Description
mxGPUGetDimensions returns a pointer to an array of mwSize indicating the dimensions of the input argument. Use mxFree to delete the output.

See Also
mxGPUGetComplexity | mxGPUGetNumberOfDimensions
mxGPUGetNumberOfDimensions (C)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Size of dimension array for mxGPUArray</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Syntax</td>
<td>#include "gpu/mxGPUArray.h"</td>
</tr>
<tr>
<td></td>
<td>mwSize mxGPUGetNumberOfDimensions(mxGPUArray const * const mgp)</td>
</tr>
<tr>
<td>Arguments</td>
<td>mgp</td>
</tr>
<tr>
<td></td>
<td>Pointer to an mxGPUArray.</td>
</tr>
<tr>
<td>Returns</td>
<td>mwSize type.</td>
</tr>
<tr>
<td>Description</td>
<td>mxGPUGetNumberOfDimensions returns the size of the dimension array for the mxGPUArray input argument, indicating the number of its dimensions.</td>
</tr>
<tr>
<td>See Also</td>
<td>mxGPUGetComplexity</td>
</tr>
</tbody>
</table>
Purpose
Number of elements on GPU for array

C Syntax
```c
#include "gpu/mxGPUArray.h"
mwSize mxGPUGetNumberOfElements(mxGPUArray const * const mgp)
```

Arguments
`mgp`
Pointer to an `mxGPUArray`.

Returns
mwSize type.

Description
`mxGPUGetNumberOfElements` returns the total number of elements on the GPU for this array.

See Also
`mxGPUGetComplexity` | `mxGPUGetDimensions` | `mxGPUGetNumberOfDimensions`
Purpose
Determine if two mxGPUArrays refer to same GPU data

C Syntax
#include "gpu/mxGPUArray.h"
int mxGPUIsSame(mxGPUArray const * const mgp1,
 mxGPUArray const * const mgp2)

Arguments
mgp1
mgp2
 Pointers to mxGPUArray.

Returns
int type.

Description
mxGPUIsSame returns an integer indicating if two mxGPUArray pointers refer to the same GPU data:

- 1 (true) indicates that the inputs refer to the same data.
- 0 (false) indicates that the inputs do not refer to the same data.

See Also
mxGPUIsValidGPUData
Purpose
Determine if mxArray is pointer to valid GPU data

C Syntax
#include "gpu/mxGPUArray.h"
int mxGPUIsValidGPUData(mxArray const * const mp)

Arguments
mp
Pointer to an mxArray.

Returns
int type.

Description
mxGPUIsValidGPUData indicates if the mxArray is a pointer to valid GPU data.

If the GPU device is reinitialized in MATLAB with gpuDevice, all data on the device becomes invalid, but the CPU data structures that refer to the GPU data still exist. This function checks whether the mxArray is a container of valid GPU data, and returns one of the following values:

- 0 (false) for CPU data or for invalid GPU data.
- 1 (true) for valid GPU data.

See Also
mxIsGPUArray
mxInitGPU (C)

Purpose
Initialize MATLAB GPU library on currently selected device

C Syntax
```c
#include "gpu/mxGPUArray.h"
int mxInitGPU()
```

Returns
int type with one of the following values:

- `MX_GPU_SUCCESS` if the MATLAB GPU library is successfully initialized.
- `MX_GPU_FAILURE` if not successfully initialized.

Description
Before using any CUDA code in your MEX file, initialize the MATLAB GPU library if you intend to use any `mxGPUArray` functionality in MEX or any GPU calls in MATLAB. There are many ways to initialize the MATLAB GPU API, including:

- Call `mxInitGPU` at the beginning of your MEX file before any CUDA code.
- Call `gpuDevice(deviceIndex)` in MATLAB before running any MEX code.
- Create a `gpuArray` in MATLAB before running any MEX code.

You should call `mxInitGPU` at the beginning of your MEX file, unless you have an alternate way of guaranteeing that the MATLAB GPU library is initialized at the start of your MEX file.

If the library is initialized, this function returns without doing any work. If the library is not initialized, the function initializes the default device. Note: At present, a MATLAB MEX file can work with only one GPU device at a time.

See Also
gpuArray | gpuDevice
Purpose
Determine if mxArray contains GPU data

C Syntax
```c
#include "gpu/mxGPUArray.h"
int mxIsGPUArray(mxArray const * const mp);
```

Arguments
- `mp`
 Pointer to an mxArray that might contain gpuArray data.

Returns
Integer indicating true result:

- 1 indicates the input is a gpuArray.
- 0 indicates the input is not a gpuArray.

Description

See Also
mxGPUIsValidGPUData
mxIsGPUArray (C)
CHECKPOINTBASE

The name of the parameter in the `mdce_def` file that defines the location of the checkpoint directories for the MATLAB job scheduler and workers.

checkpoint directory

See CHECKPOINTBASE.

client

The MATLAB session that defines and submits the job. This is the MATLAB session in which the programmer usually develops and prototypes applications. Also known as the MATLAB client.

client computer

The computer running the MATLAB client; often your desktop.

cluster

A collection of computers that are connected via a network and intended for a common purpose.

coarse-grained application

An application for which run time is significantly greater than the communication time needed to start and stop the program. Coarse-grained distributed applications are also called embarrassingly parallel applications.

communicating job

Job composed of tasks that communicate with each other during evaluation. All tasks must run simultaneously. A special case of communicating job is a parallel pool, used for executing `parfor`-loops and `spmd` blocks.

Composite

An object in a MATLAB client session that provides access to data values stored on the workers in a parallel pool, such as the values of variables that are assigned inside an `spmd` statement.

computer

A system with one or more processors.
distributed application
The same application that runs independently on several nodes, possibly with different input parameters. There is no communication, shared data, or synchronization points between the nodes, so they are generally considered to be coarse-grained.

distributed array
An array partitioned into segments, with each segment residing in the workspace of a different worker.

DNS
Domain Name System. A system that translates Internet domain names into IP addresses.

dynamic licensing
The ability of a MATLAB worker to employ all the functionality you are licensed for in the MATLAB client, while checking out only an engine license. When a job is created in the MATLAB client with Parallel Computing Toolbox software, the products for which the client is licensed will be available for all workers that evaluate tasks for that job. This allows you to run any code on the cluster that you are licensed for on your MATLAB client, without requiring extra licenses for the worker beyond MATLAB Distributed Computing Server software. For a list of products that are not eligible for use with Parallel Computing Toolbox software, see http://www.mathworks.com/products/ineligible_programs/.

fine-grained application
An application for which run time is significantly less than the communication time needed to start and stop the program. Compare to coarse-grained applications.

head node
Usually, the node of the cluster designated for running the job scheduler and license manager. It is often useful to run all the nonworker related processes on a single machine.

heterogeneous cluster
A cluster that is not homogeneous.
homogeneous cluster
A cluster of identical machines, in terms of both hardware and software.

independent job
A job composed of independent tasks, which do not communicate with each other during evaluation. Tasks do not need to run simultaneously.

job
The complete large-scale operation to perform in MATLAB, composed of a set of tasks.

job scheduler checkpoint information
Snapshot of information necessary for the MATLAB job scheduler to recover from a system crash or reboot.

job scheduler database
The database that the MATLAB job scheduler uses to store the information about its jobs and tasks.

LOGDIR
The name of the parameter in the mdce_def file that defines the directory where logs are stored.

MATLAB client
See client.

MATLAB job scheduler (MJS)
The MathWorks process that queues jobs and assigns tasks to workers. Formerly known as a job manager.

MATLAB worker
See worker.

mdce
The service that has to run on all machines before they can run a MATLAB job scheduler or worker. This is the engine foundation process, making sure that the job scheduler and worker processes that it controls are always running.

Note that the program and service name is all lowercase letters.
mdce_def file
The file that defines all the defaults for the mdce processes by allowing you to set preferences or definitions in the form of parameter values.

MPI
Message Passing Interface, the means by which workers communicate with each other while running tasks in the same job.

node
A computer that is part of a cluster.

parallel application
The same application that runs on several workers simultaneously, with communication, shared data, or synchronization points between the workers.

parallel pool
A collection of workers that are reserved by the client and running a special communicating job for execution of parfor-loops, spmd statements and distributed arrays.

private array
An array which resides in the workspaces of one or more, but perhaps not all workers. There might or might not be a relationship between the values of these arrays among the workers.

random port
A random unprivileged TCP port, i.e., a random TCP port above 1024.

register a worker
The action that happens when both worker and MATLAB job scheduler are started and the worker contacts the job scheduler.

replicated array
An array which resides in the workspaces of all workers, and whose size and content are identical on all workers.

scheduler
The process, either local, third-party, or the MATLAB job scheduler, that queues jobs and assigns tasks to workers.
spmd (single program multiple data)
A block of code that executes simultaneously on multiple workers in a parallel pool. Each worker can operate on a different data set or different portion of distributed data, and can communicate with other participating workers while performing the parallel computations.

task
One segment of a job to be evaluated by a worker.

variant array
An array which resides in the workspaces of all workers, but whose content differs on these workers.

worker
The MATLAB session that performs the task computations. Also known as the MATLAB worker or worker process.

worker checkpoint information
Files required by the worker during the execution of tasks.
A
arrayfun function 11-3
arrays
 - codistributed 5-4
 - local 5-12
 - private 5-4
 - replicated 5-2
 - types of 5-2
 - variant 5-3

B
batch function 11-7
bsxfun function 11-12

cancel function 11-14
 - FevalFuture 11-16
Center jobs
 - supported schedulers 8-4
changePassword function 11-17
classUnderlying function 11-18
clear function 11-20
cluster profiles. See profiles
codistributed arrays
 - constructor functions 5-11
 - creating 5-8
 - defined 5-4
 - indexing 5-16
 - working with 5-6
codistributed function 11-22
codistributed object 10-2
codistributed.build function 11-24
codistributed.cell function 11-26
codistributed.colon function 11-28
codistributed.eye function 11-30
codistributed.false function 11-32
codistributed.Inf function 11-34
codistributed.NaN function 11-36
codistributed.ones function 11-38
codistributed.rand function 11-40
codistributed.randn function 11-42
codistributed.spalloc function 11-44
codistributed.speye function 11-45
codistributed.sprand function 11-47
codistributed.sprandn function 11-49
codistributed.true function 11-51
codistributed.zeros function 11-53
codistributor function 11-55
codistributor1d function 11-58
codistributor1d object 10-5
codistributor1d.defaultPartition function 11-61
codistributor2dbc function 11-62
codistributor2dbc object 10-6
codistributor2dbc.defaultLabGrid function 11-64
communicating jobs 8-2
Composite 3-6
 - getting started 1-12
 - outside spmd 3-9
Composite function 11-65
Composite object 10-7
configurations. See profiles
createCommunicatingJob function 11-67
createJob function 11-70
createTask function 11-73
current working directory
 - MATLAB worker 6-30
delete function 11-76
 - parallel pool 11-77
demote function 11-78
diary function 11-80
distributed function 11-81
distributed object 10-11
distributed.cell function 11-82
Index-2
distributed.ones 11-87
distributed.rand 11-88
distributed.randn 11-89
distributed.spalloc 11-90
distributed.speye 11-91
distributed.sprand 11-92
distributed.sprandn 11-93
distributed.true 11-94
distributed.zeros 11-95
dload 11-96
dsave 11-98
exist 11-99
fetchNext 11-102
fetchOutputs
 FevalFuture 11-105
 job 11-104
feval 11-107
findJob 11-109
findTask 11-111
for
 distributed 11-113
 drange 11-113
gather 11-115
gcat 11-118
getAttachedFilesFolder 11-120
getCodistributor 11-121
getCurrentCluster 11-123
getCurrentJob 11-124
getCurrentTask 11-125
getCurrentWorker 11-126
getDebugLog 11-128
getJobClusterData 11-130
getJobFolder 11-131
getJobFolderOnCluster 11-132
getLocalPart 11-133
getLogLocation 11-134
globalIndices 11-135
gop 11-137
gplus 11-139
gpuArray 11-140
gpuDevice 11-141
gpuDeviceCount 11-143
gputimeit 11-144
help 11-146
isaUnderlying 11-147
iscodistributed 11-148
isComplete 11-149
isdistributed 11-150
isequal 11-151
isreplicated 11-152
jobStartup 11-153
labBarrier 11-154
labBroadcast 11-155
labindex 11-157
labProbe 11-158
labReceive 11-159
labSend 11-160
labSendReceive 11-161
length 11-164
load 11-167
logout 11-169
methods 11-170
mpiLibConf 11-171
mpiprofile 11-173
mpiSettings 11-178
numlabs 11-180
pagefun 11-181
parallel.clusterProfiles 11-183
parallel.defaultClusterProfile 11-184
parallel.exportProfile 11-185
parallel.gpu.CUDAKernel 11-186
parallel.importProfile 11-188
parcluster 11-190
parfeval 11-191
parfevalOnAll 11-193
parfor 11-194
pause 11-205
pctconfig 11-206
pctRunDeployedCleanup 11-208
pctRunOnAll 11-209
plload 11-210
pload 11-212
poolStartup 11-215
promote 11-216
psave 11-218
redistribute 11-220
reset 11-100 11-221
resume 11-223
saveAsProfile 11-224
saveProfile 11-225
setConstantMemory 11-226
setJobClusterData 11-227
size 11-228
sparse 11-229
spmd 11-232
submit 11-235
subsasgn 11-236
subsref 11-237
taskFinish 11-238
taskStartup 11-239
wait 11-241
FevalFuture 11-243

gather function 11-115
gcat function 11-118
generic scheduler
 communicating jobs 8-8
 independent jobs 7-24
getAttachedFilesFolder function 11-120
getCodistributor function 11-121
currentCluster function 11-123
currentJob function 11-124
currentTask function 11-125
currentWorker function 11-126
getDebugLogp function 11-128
currentClusterData function 11-130
currentFolder function 11-131
currentFolderOnCluster function 11-132

getLocalPart function 11-133
getLogLocation function 11-134
globalIndices function 11-134
gop function 11-137
gplus function 11-139
gpuArray function 11-140
gpuArray object 10-14
gpuDevice function 11-141
gpuDevice object 10-9 10-17
gpuDeviceCount function 11-143
gputimeit function 11-144

H
help function 11-146

I
isaUnderlying function 11-147
iscodistributed function 11-148
isComplete function 11-149
isdistributed function 11-150
isequal function 11-151
isreplicated function 11-152

J
job
 creating
 example 7-10
 creating on generic scheduler
 example 7-34
 life cycle 6-8
 local scheduler 7-4
 submitting to generic scheduler queue 7-36
 submitting to local scheduler 7-6
 submitting to queue 7-12
job manager
 finding
 example 7-4 7-9
jobStartup function 11-153
Index

L
labBarrier function 11-154
labBroadcast function 11-155
labIndex function 11-157
labProbe function 11-158
labReceive function 11-159
labSend function 11-160
labSendReceive function 11-161
length function 11-164
load function 11-167
logout function 11-169

M
methods function 11-170
mpiLibConf function 11-171
mpiprofile function 11-173
mpiSettings function 11-178
mxGPUArray object 10-21

N
numlabs function 11-180

O
objects 6-7
codistributed 10-2
codistributor1d 10-5
codistributor2dbc 10-6
Composite 10-7
distributed 10-11
gpuArray 10-14
GPUDevice 10-9 10-17
mxGPUArray 10-21
parallel.Cluster 10-23
parallel.Future 10-31
parallel.Job 10-34
parallel.Pool 10-38
parallel.Task 10-40
parallel.Worker 10-44
RemoteClusterAccess 10-46
saving or sending 6-31

P
pagefun function 11-181
parallel configurations. See profiles
parallel for-loops. See parfor-loops
parallel.Cluster object 10-23
parallel.clusterProfiles function 11-183
parallel.defaultClusterProfile
function 11-184
parallel.exportProfile function 11-185
parallel.Future object 10-31
parallel.gpu.CUDAKernel function 11-186
parallel.importProfile function 11-188
parallel.Job object 10-34
parallel.Pool object 10-38
parallel.Task object 10-40
parallel.Worker object 10-44
parcluster function 11-190
parfeval function 11-191
parfevalOnAll function 11-193
parfor function 11-194
parfor-loops 2-1
break 2-13
broadcast variables 2-24
classification of variables 2-18
compared to for-loops 2-5
error handling 2-8
for-drange 2-17
global variables 2-14
improving performance 2-33
limitations 2-9
local vs. cluster workers 2-16
loop variable 2-19
MATLAB path 2-8
nested functions 2-11
nested loops 2-11
nesting with spmd 2-13
nondistributable functions 2-11
persistent variables 2-14
programming considerations 2-8
reduction assignments 2-25
reduction assignments, associativity 2-27
reduction assignments, commutativity 2-28
reduction assignments, overloading 2-29
reduction variables 2-24
release compatibility 2-17
return 2-13
sliced variables 2-20
temporary variables 2-31
transparency 2-9
pause function 11-205
pctconfig function 11-206
pctRunDeployedCleanup function 11-208
pctRunOnAll function 11-209
platforms
 supported 6-7
pload function 11-210
pmode function 11-212
poolStartup function 11-215
profiles 6-14
 importing and exporting 6-16
 using in applications 6-24
 validating 6-22
 with MATLAB Compiler 6-17
programming
 basic session 7-8
 guidelines 6-29
 local scheduler 7-3
tips 6-29
promote function 11-216
psave function 11-218

reset function 11-100 11-221
results
 local scheduler 7-6
 retrieving 7-13
 retrieving from job on generic scheduler 7-36
resume function 11-223

saveAsProfile function 11-224
saveProfile function 11-225
saving
 objects 6-31
scheduler
 generic interface
 communicating jobs 8-8
 independent jobs 7-24
setConstantMemory function 11-226
setJobClusterData function 11-227
single program multiple data. See spmd
size function 11-228
sparse function 11-229
spmd 3-1
 break 3-16
 Composite 3-6
 error handling 3-14
 getting started 1-12
 global variables 3-16
 limitations 3-14
 MATLAB path 3-14
 nested functions 3-15
 nested spmd 3-16
 nesting with parfor 3-16
 persistent variables 3-16
 programming considerations 3-14
 return 3-16
 transparency 3-14
spmd function 11-232
submit function 11-235
subsasgn function 11-236

R
redistribute function 11-220
RemoteClusterAccess object 10-46
subsref function 11-237

task
 creating
 example 7-12
 creating on generic scheduler
 example 7-35
 local scheduler 7-5
taskFinish function 11-238
 taskStartup function 11-239
 troubleshooting
 programs 6-52

wait function 11-241
 FevalFuture 11-243